【人工智能】定义详解,研究价值,发展阶段,发展阶段,指纹识别的详细讲解

简介: 定义详解研究价值发展阶段科学介绍指纹识别

人工智能(Artificial Intelligence),英文缩写为 AI。
它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是新一轮科技革命和产业变革的重要驱动力量。
人工智能是智能学科重要的组成部分,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

定义详解
关于什么是“智能”,涉及到诸如意识(CONSCIOUSNESS)、自我(SELF)、思维(MIND)(包括无意识的思维(UNCONSCIOUS_MIND)) 等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是人工智能。人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。

尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。

20世纪70年代以来,人工智能被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。

人工智能是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。
image.png
研究价值
例如繁重的科学和工程计算本来是要人脑来承担的,如今计算机不但能完成这种计算,而且能够比人脑做得更快、更准确,因此当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”,可见复杂工作的定义是随着时代的发展和技术的进步而变化的,人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,另一方面又转向更有意义、更加困难的目标。

通常,“机器学习”的数学基础是“统计学”、“信息论”和“控制论”。还包括其他非数学学科。这类“机器学习”对“经验”的依赖性很强。计算机需要不断从解决一类问题的经验中获取知识,学习策略,在遇到类似的问题时,运用经验知识解决问题并积累新的经验,就像普通人一样。我们可以将这样的学习方式称之为“连续型学习”。但人类除了会从经验中学习之外,还会创造,即“跳跃型学习”。这在某些情形下被称为“灵感”或“顿悟”。一直以来,计算机最难学会的就是“顿悟”。或者再严格一些来说,计算机在学习和“实践”方面难以学会“不依赖于量变的质变”,很难从一种“质”直接到另一种“质”,或者从一个“概念”直接到另一个“概念”。正因为如此,这里的“实践”并非同人类一样的实践。人类的实践过程同时包括经验和创造。这是智能化研究者梦寐以求的东西。

2013年,帝金数据普数中心数据研究员S.C WANG开发了一种新的数据分析方法,该方法导出了研究函数性质的新方法。作者发现,新数据分析方法给计算机学会“创造”提供了一种方法。本质上,这种方法为人的“创造力”的模式化提供了一种相当有效的途径。这种途径是数学赋予的,是普通人无法拥有但计算机可以拥有的“能力”。从此,计算机不仅精于算,还会因精于算而精于创造。计算机学家们应该斩钉截铁地剥夺“精于创造”的计算机过于全面的操作能力,否则计算机真的有一天会“反捕”人类。

当回头审视新方法的推演过程和数学的时候,作者拓展了对思维和数学的认识。数学简洁,清晰,可靠性、模式化强。在数学的发展史上,处处闪耀着数学大师们创造力的光辉。这些创造力以各种数学定理或结论的方式呈现出来,而数学定理最大的特点就是:建立在一些基本的概念和公理上,以模式化的语言方式表达出来的包含丰富信息的逻辑结构。应该说,数学是最单纯、最直白地反映着(至少一类)创造力模式的学科。
当前人工智能主要应用的领域
image.png

相关文章
|
5月前
|
数据采集 人工智能 监控
人工智能驱动的软件工程:测试左移的崛起价值
本文探讨了人工智能驱动下测试左移理念在软件工程中的重要性,分析测试工程师在需求评估、AI代码生成及遗留系统优化中的关键作用,揭示AI带来的挑战与机遇,并指出测试工程师需提升技能、关注合规与可维护性,以在AI时代保障软件质量。
348 89
|
7月前
|
人工智能 架构师 算法
人工智能+:职业价值的重构与技能升级
当“人工智能+”成为产业升级标配,职业价值正被重新定义。这并非简单岗位替代,而是人机协作新模式的诞生。AI接管重复性任务后,从业者可专注创造性活动,职业“含人量”不降反升。未来高价值岗位集中在技术赋能、场景创新与价值监督三层面,需跨界人才、流程架构师及伦理师等新角色。把握机遇需重构学习逻辑,强化人机协作实训与伦理素养,发展放大人类独特性的能力,构建不可替代的“人类+”优势。
|
9月前
|
人工智能 自然语言处理 算法
生成式人工智能认证(GAI认证)与标准化进程协同发展及就业市场赋能研究
本文探讨生成式人工智能认证(GAI认证)在人工智能标准化进程中的重要性,分析其对就业市场的积极影响及未来发展趋势。GAI认证不仅是个人AI能力的权威认可,还推动行业标准化与技术创新。文章指出,随着技术融合加速和应用场景拓展,GAI认证标准需不断完善,以应对技术更新、数据安全等挑战,为AI健康发展贡献力量。
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
生成式人工智能的价值回归:重塑技术、社会与个体的发展轨迹
生成式人工智能(Generative AI)正以前所未有的速度重塑社会面貌。它从单一决策工具转变为创造性生产力引擎,推动知识生产、艺术创作与科学研究的发展。同时,其广泛应用引发社会生产力和生产关系的深刻变革,带来就业结构变化与社会公平挑战。此外,生成式AI还面临伦理法律问题,如透明性、责任归属及知识产权等。培生公司推出的生成式AI认证项目,旨在培养专业人才,促进技术与人文融合,助力技术可持续发展。总体而言,生成式AI正从工具属性向赋能属性升华,成为推动社会进步的新引擎。
|
6月前
|
人工智能 算法
2025 生成式人工智能认证,如何构建知识能力价值闭环
生成式人工智能(AI)认证助力职场人士在2025年AI浪潮中脱颖而出。通过系统化学习,涵盖AI方法论、提示工程及伦理法律等领域,构建知识桥梁;强化实践能力,熟悉工具操作与问题解决;最终释放价值潜力,实现职业跃迁。GAI认证由培生Certiport推出,结合理论与实操,全面评估专业能力,赋能各类从业者,在技术发展中稳步前行。
|
机器学习/深度学习 人工智能 机器人
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
313 95
|
9月前
|
人工智能 算法 语音技术
学什么能不被AI取代?探索生成式人工智能认证的价值
在AI快速发展的时代,生成式人工智能(Generative AI)成为关键竞争力。掌握其技能可拓宽职业空间,而生成式人工智能认证(如GAI认证)提供了系统学习框架,涵盖核心知识、实用工具及道德法律内容,获国际认可。选择此认证,不仅能提升个人竞争力,还能应对AI带来的职业挑战,开启未来职场新篇章。无论学生还是在职人士,都可通过学习迎接AI时代的机遇。
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
2025人工智能职场报告:57.2%的职场人考虑从事AI类职业,生成式人工智能(GAI)认证如何重构职业价值坐标系
人工智能(AI)已成为21世纪最具变革性的力量之一,尤其生成式人工智能(GAI)认证正重构职业价值坐标系。数据显示,57.2%的职场人愿从事AI相关职业,凸显其吸引力。GAI认证不仅提升个人竞争力、拓宽职业道路,还增强职业认同感,助力企业在人才选拔中更精准高效。面对机遇,职场人需明确目标、结合实践、持续学习,以适应快速发展的AI领域,为企业与个人发展奠定坚实基础。
|
机器学习/深度学习 人工智能 数据可视化
人工智能在图形学领域的研究热点有哪些?
AIGC:通过生成对抗网络(GAN)、变分自编码器(VAE)及其变体等技术,能够根据用户输入的文字描述、草图等生成高质量、高分辨率的图像,在艺术创作、游戏开发、广告设计等领域应用广泛。如OpenAI的DALL-E、Stable Diffusion等模型,可生成风格各异、内容丰富的图像,为创作者提供灵感和素材.
391 59
|
机器学习/深度学习 人工智能 人机交互
图形学领域的研究热点会给人工智能带来哪些挑战和机遇?
图形学中的一些研究热点,如 3D 模型生成与重建,需要大量的 3D 数据来训练模型,但 3D 数据的获取往往比 2D 图像数据更困难、成本更高。而且,3D 数据的多样性和复杂性也使得数据的标注和预处理工作更加繁琐,这对人工智能的数据处理能力提出了更高要求。例如,在训练一个能够生成高精度 3D 人体模型的人工智能模型时,需要大量不同姿态、不同体型的 3D 人体扫描数据,而这些数据的采集和整理是一项艰巨的任务.
300 50

热门文章

最新文章