socket | 网络套接字、网络字节序、sockaddr结构

简介: socket | 网络套接字、网络字节序、sockaddr结构

套接字概念

Socket本身有“插座”的意思,在Linux环境下,用于表示进程间网络通信的特殊文件类型。本质为内核借助缓冲区形成的伪文件。

既然是文件,那么理所当然的,我们可以使用文件描述符引用套接字。与管道类似的,Linux系统将其封装成文件的目的是为了统一接口,使得读写套接字和读写文件的操作一致。区别是管道主要应用于本地进程间通信,而套接字多应用于网络进程间数据的传递。

套接字的内核实现较为复杂,不宜在学习初期深入学习。

在TCP/IP协议中,“IP地址+TCP或UDP端口号”唯一标识网络通讯中的一个进程。“IP地址+端口号”就对应一个socket。欲建立连接的两个进程各自有一个socket来标识,那么这两个socket组成的socket pair就唯一标识一个连接。因此可以用Socket来描述网络连接的一对一关系。

套接字通信原理如下图所示:

在网络通信中,套接字一定是成对出现的。一端的发送缓冲区对应对端的接收缓冲区。我们使用同一个文件描述符索发送缓冲区和接收缓冲区。

TCP/IP协议最早在BSD UNIX上实现,为TCP/IP协议设计的应用层编程接口称为socket API。本章的主要内容是socket API,主要介绍TCP协议的函数接口,最后介绍UDP协议和UNIX Domain Socket的函数接口。

网络字节序

我们已经知道,内存中的多字节数据相对于内存地址有大端和小端之分,磁盘文件中的多字节数据相对于文件中的偏移地址也有大端小端之分。网络数据流同样有大端小端之分,那么如何定义网络数据流的地址呢?发送主机通常将发送缓冲区中的数据按内存地址从低到高的顺序发出,接收主机把从网络上接到的字节依次保存在接收缓冲区中,也是按内存地址从低到高的顺序保存,因此,网络数据流的地址应这样规定:先发出的数据是低地址,后发出的数据是高地址。

TCP/IP协议规定,网络数据流应采用大端字节序,即低地址高字节。例如上一节的UDP段格式,地址0-1是16位的源端口号,如果这个端口号是1000(0x3e8),则地址0是0x03,地址1是0xe8,也就是先发0x03,再发0xe8,这16位在发送主机的缓冲区中也应该是低地址存0x03,高地址存0xe8。但是,如果发送主机是小端字节序的,这16位被解释成0xe803,而不是1000。因此,发送主机把1000填到发送缓冲区之前需要做字节序的转换。同样地,接收主机如果是小端字节序的,接到16位的源端口号也要做字节序的转换。如果主机是大端字节序的,发送和接收都不需要做转换。同理,32位的IP地址也要考虑网络字节序和主机字节序的问题。

为使网络程序具有可移植性,使同样的C代码在大端和小端计算机上编译后都能正常运行,可以调用以下库函数做网络字节序和主机字节序的转换。

#include <arpa/inet.h>
uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

h表示host,n表示network,l表示32位长整数,s表示16位短整数。

如果主机是小端字节序,这些函数将参数做相应的大小端转换然后返回,如果主机是大端字节序,这些函数不做转换,将参数原封不动地返回。

IP地址转换函数

早期:

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
int inet_aton(const char *cp, struct in_addr *inp);
in_addr_t inet_addr(const char *cp);
char *inet_ntoa(struct in_addr in);

只能处理IPv4的ip地址

注意参数是struct in_addr

现在:

#include <arpa/inet.h>
int inet_pton(int af, const char *src, void *dst);
const char *inet_ntop(int af, const void *src, char *dst, socklen_t size);

支持IPv4和IPv6

其中inet_pton和inet_ntop不仅可以转换IPv4的in_addr,还可以转换IPv6的in6_addr。

因此函数接口是void *addrptr。

sockaddr数据结构

strcut sockaddr 很多网络编程函数诞生早于IPv4协议,那时候都使用的是sockaddr结构体,为了向前兼容,现在sockaddr退化成了(void *)的作用,传递一个地址给函数,至于这个函数是sockaddr_in还是sockaddr_in6,由地址族确定,然后函数内部再强制类型转化为所需的地址类型。

sockaddr数据结构

struct sockaddr {
  sa_family_t sa_family;    /* address family, AF_xxx */
  char sa_data[14];     /* 14 bytes of protocol address */
};

使用 sudo grep -r “struct sockaddr_in {” /usr 命令可查看到struct sockaddr_in结构体的定义。一般其默认的存储位置:/usr/include/linux/in.h 文件中。

struct sockaddr_in {
  __kernel_sa_family_t sin_family;      /* Address family */    地址结构类型
  __be16 sin_port;              /* Port number */   端口号
  struct in_addr sin_addr;          /* Internet address */  IP地址
  /* Pad to size of `struct sockaddr'. */
  unsigned char __pad[__SOCK_SIZE__ - sizeof(short int) -
  sizeof(unsigned short int) - sizeof(struct in_addr)];
};
struct in_addr {            /* Internet address. */
  __be32 s_addr;
};
struct sockaddr_in6 {
  unsigned short int sin6_family;     /* AF_INET6 */
  __be16 sin6_port;           /* Transport layer port # */
  __be32 sin6_flowinfo;         /* IPv6 flow information */
  struct in6_addr sin6_addr;      /* IPv6 address */
  __u32 sin6_scope_id;        /* scope id (new in RFC2553) */
};
struct in6_addr {
  union {
    __u8 u6_addr8[16];
    __be16 u6_addr16[8];
    __be32 u6_addr32[4];
  } in6_u;
  #define s6_addr     in6_u.u6_addr8
  #define s6_addr16   in6_u.u6_addr16
  #define s6_addr32   in6_u.u6_addr32
};
#define UNIX_PATH_MAX 108
  struct sockaddr_un {
  __kernel_sa_family_t sun_family;  /* AF_UNIX */
  char sun_path[UNIX_PATH_MAX];   /* pathname */
};

IPv4和IPv6的地址格式定义在netinet/in.h中,IPv4地址用sockaddr_in结构体表示,包括16位端口号和32位IP地址,IPv6地址用sockaddr_in6结构体表示,包括16位端口号、128位IP地址和一些控制字段。UNIX Domain Socket的地址格式定义在sys/un.h中,用sock-addr_un结构体表示。各种socket地址结构体的开头都是相同的,前16位表示整个结构体的长度(并不是所有UNIX的实现都有长度字段,如Linux就没有),后16位表示地址类型。IPv4、IPv6和Unix Domain Socket的地址类型分别定义为常数AF_INET、AF_INET6、AF_UNIX。这样,只要取得某种sockaddr结构体的首地址,不需要知道具体是哪种类型的sockaddr结构体,就可以根据地址类型字段确定结构体中的内容。因此,socket API可以接受各种类型的sockaddr结构体指针做参数,例如bind、accept、connect等函数,这些函数的参数应该设计成void *类型以便接受各种类型的指针,但是sock API的实现早于ANSI C标准化,那时还没有void *类型,因此这些函数的参数都用struct sockaddr *类型表示,在传递参数之前要强制类型转换一下,例如:

struct sockaddr_in servaddr;
bind(listen_fd, (struct sockaddr *)&servaddr, sizeof(servaddr));    /* initialize servaddr */


相关文章
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
72 8
|
2月前
|
Kubernetes 网络协议 Python
Python网络编程:从Socket到Web应用
在信息时代,网络编程是软件开发的重要组成部分。Python作为多用途编程语言,提供了从Socket编程到Web应用开发的强大支持。本文将从基础的Socket编程入手,逐步深入到复杂的Web应用开发,涵盖Flask、Django等框架的应用,以及异步Web编程和微服务架构。通过本文,读者将全面了解Python在网络编程领域的应用。
44 1
|
3月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
|
3月前
|
消息中间件 监控 网络协议
Python中的Socket魔法:如何利用socket模块构建强大的网络通信
本文介绍了Python的`socket`模块,讲解了其基本概念、语法和使用方法。通过简单的TCP服务器和客户端示例,展示了如何创建、绑定、监听、接受连接及发送/接收数据。进一步探讨了多用户聊天室的实现,并介绍了非阻塞IO和多路复用技术以提高并发处理能力。最后,讨论了`socket`模块在现代网络编程中的应用及其与其他通信方式的关系。
334 3
|
3月前
|
网络协议 Linux 应用服务中间件
Socket通信之网络协议基本原理
【10月更文挑战第10天】网络协议定义了机器间通信的标准格式,确保信息准确无损地传输。主要分为两种模型:OSI七层模型与TCP/IP模型。
|
3月前
|
边缘计算 自动驾驶 5G
5G的网络拓扑结构典型模式
5G的网络拓扑结构典型模式
387 4
|
3月前
|
机器学习/深度学习 算法
神经网络的结构与功能
神经网络是一种广泛应用于机器学习和深度学习的模型,旨在模拟人类大脑的信息处理方式。它们由多层不同类型的节点或“神经元”组成,每层都有特定的功能和责任。
123 0
|
3月前
|
网络协议 测试技术 网络安全
Python编程-Socket网络编程
Python编程-Socket网络编程
33 0
|
4月前
|
网络协议
关于套接字socket的网络通信。&聊天系统 聊天软件
关于套接字socket的网络通信。&聊天系统 聊天软件
|
19天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
59 17