基于Googlenet深度学习网络的信号调制类型识别matlab仿真

简介: 基于Googlenet深度学习网络的信号调制类型识别matlab仿真

1.算法运行效果图预览

8f8444adda0a0053a66725e3f2d6adcd_82780907_202310262332310797868511_Expires=1698334951&Signature=ooV6ajnll0nctS1AwprbG79ljiI%3D&domain=8.jpg
cbe5b9223a59536a0e29cef12cd30b50_82780907_202310262332310829128607_Expires=1698334951&Signature=dHzaS5K2nuPrrhVn5Q4GhRN0%2B2I%3D&domain=8.jpeg

2.算法运行软件版本
MATLAB2022a

3.算法理论概述
信号调制类型识别是在无线通信和无线电频谱监测中的一个重要任务。不同信号调制类型具有不同的频谱特征,深度学习方法在信号调制类型识别中取得了显著的成果。

3.1 深度学习与卷积神经网络
深度学习是一种机器学习方法,卷积神经网络(CNN)是深度学习的重要分支。CNN通过多层卷积和池化层来学习输入数据的特征表示。GoogLeNet是一种深度卷积神经网络结构,其主要创新在于使用了多个并行的卷积层和1x1卷积核来提高网络的效率和准确性。

3.2 数据预处理
首先,采集信号数据并对其进行预处理。信号数据通常以复数形式表示,包括实部和虚部。预处理可能包括归一化、去噪等步骤。

3.3 GoogLeNet结构
GoogLeNet网络结构使用了Inception模块,每个模块包括不同大小的卷积核和池化层,以捕捉多尺度的特征。每个Inception模块的输出被串联在一起,形成网络的输出。

GoogLenet网络亮点

1.引入了Inception结构(融合不同尺度的特征信息)
2.使用1x1的卷积核进行降维以及映射处理
3.添加两个辅助分类器帮助训练
4.丢弃全连接层,使用平均池化层(大大减少模型参数)

Inception结构

fd1e23aecb645b26f296c950ec0ddafd_82780907_202310262333400204836295_Expires=1698335020&Signature=i%2Bu6EY3ipZcBR26UX31Y6ZBBM98%3D&domain=8.jpg

3.4 分类器
在网络的顶部,添加一个全连接层作为分类器,将特征映射到各个信号调制类型的概率分布。通常使用softmax函数来获得不同类别的概率。

4.部分核心程序

```% 获取特征学习器和分类器的层名称
Feature_Learner = net.Layers(142).Name;
Output_Classifier = net.Layers(144).Name;
% 获取类别数量
Number_of_Classes = numel(categories(Training_Dataset.Labels));
% 创建新的特征学习器和分类器层
New_Feature_Learner = fullyConnectedLayer(Number_of_Classes, ...
'Name', 'Coal Feature Learner', ...
'WeightLearnRateFactor', 10, ...
'BiasLearnRateFactor', 10);

New_Classifier_Layer = classificationLayer('Name', 'Coal Classifier');
% 构建新的网络架构
Network_Architecture = layerGraph(net);

New_Network = replaceLayer(Network_Architecture, Feature_Learner, New_Feature_Learner);
New_Network = replaceLayer(New_Network, Output_Classifier, New_Classifier_Layer);
% 分析新的网络结构
analyzeNetwork(New_Network)

% 设置训练选项
maxEpochs = 20;
Minibatch_Size = 8;
Validation_Frequency = floor(numel(Resized_Training_Dataset.Files)/Minibatch_Size);
Training_Options = trainingOptions('sgdm', ...
'MiniBatchSize', Minibatch_Size, ...
'MaxEpochs', maxEpochs, ...
'InitialLearnRate', 1e-3, ...
'Shuffle', 'every-epoch', ...
'ValidationData', Resized_Validation_Dataset, ...
'ValidationFrequency', Validation_Frequency, ...
'Verbose', false, ...
'Plots', 'training-progress');
% 训练网络
net = trainNetwork(Resized_Training_Dataset, New_Network, Training_Options);
% 保存训练好的模型
save gnet.mat

```

相关文章
|
1天前
|
算法 数据安全/隐私保护 计算机视觉
基于DCT变换的彩色图像双重水印嵌入和提取算法matlab仿真
**算法摘要:** - 图形展示:展示灰度与彩色图像水印应用,主辅水印嵌入。 - 软件环境:MATLAB 2022a。 - 算法原理:双重水印,转换至YCbCr/YIQ,仅影响亮度;图像分割为M×N块,DCT变换后嵌入水印。 - 流程概览:两步水印嵌入,每步对应不同图示表示。 - 核心代码未提供。
|
1天前
|
机器学习/深度学习 算法 计算机视觉
m基于Yolov2深度学习网络的智能零售柜商品识别系统matlab仿真,带GUI界面
MATLAB 2022a中展示了YOLOv2目标检测算法的仿真结果,包括多张检测图像。YOLOv2是实时检测算法,由卷积层和全连接层构成,输出张量包含边界框坐标和类别概率。损失函数由三部分组成。程序使用75%的数据进行训练,剩余25%作为测试集。通过ResNet-50预训练模型构建YOLOv2网络,并用SGDM优化器进行训练。训练完成后,保存模型为`model.mat`。
14 2
|
2天前
|
机器学习/深度学习 算法 数据挖掘
基于PSO优化的CNN-GRU-Attention的时间序列回归预测matlab仿真
摘要: 本文介绍了运用粒子群优化(PSO)调整深度学习模型超参数以提升时间序列预测性能的方法。在比较了优化前后的效果(Ttttttttttt12 vs Ttttttttttt34)后,阐述了使用matlab2022a软件的算法。文章详细讨论了CNN、GRU网络和注意力机制在时间序列预测中的作用,以及PSO如何优化这些模型的超参数。核心程序展示了PSO的迭代过程,通过限制和调整粒子的位置(x1)和速度(v1),寻找最佳解决方案(gbest1)。最终,结果保存在R2.mat文件中。
基于PSO优化的CNN-GRU-Attention的时间序列回归预测matlab仿真
|
23小时前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习在图像识别中的应用与挑战探索机器学习中的自然语言处理技术
【4月更文挑战第30天】 随着人工智能技术的飞速发展,深度学习已经成为计算机视觉领域的核心动力。本文将探讨深度学习在图像识别任务中的关键技术、应用实例以及面临的主要挑战。我们将重点讨论卷积神经网络(CNN)的架构优化、数据增强技术以及迁移学习的策略,并通过具体案例分析其在医疗影像、自动驾驶和面部识别等领域的应用成效。同时,我们也将指出当前模型泛化能力不足、对抗性攻击以及算力资源需求等挑战,并提出潜在的解决方向。 【4月更文挑战第30天】 在人工智能领域,自然语言处理(NLP)是赋予机器理解和响应人类语言能力的关键技术。本文将深入探讨NLP的发展历程、核心技术及其在不同领域的应用案例。我们将从
|
1天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【Python机器学习专栏】PyTorch在深度学习中的应用
【4月更文挑战第30天】PyTorch是流行的开源深度学习框架,基于动态计算图,易于使用且灵活。它支持张量操作、自动求导、优化器和神经网络模块,适合快速实验和模型训练。PyTorch的优势在于易用性、灵活性、社区支持和高性能(利用GPU加速)。通过Python示例展示了如何构建和训练神经网络。作为一个强大且不断发展的工具,PyTorch适用于各种深度学习任务。
|
1天前
|
机器学习/深度学习 人工智能 缓存
安卓应用性能优化实践探索深度学习在图像识别中的应用进展
【4月更文挑战第30天】随着智能手机的普及,移动应用已成为用户日常生活的重要组成部分。对于安卓开发者而言,确保应用流畅、高效地运行在多样化的硬件上是一大挑战。本文将探讨针对安卓平台进行应用性能优化的策略和技巧,包括内存管理、多线程处理、UI渲染效率提升以及电池使用优化,旨在帮助开发者构建更加健壮、响应迅速的安卓应用。 【4月更文挑战第30天】 随着人工智能技术的迅猛发展,深度学习已成为推动计算机视觉领域革新的核心动力。本篇文章将深入分析深度学习技术在图像识别任务中的最新应用进展,并探讨其面临的挑战与未来发展趋势。通过梳理卷积神经网络(CNN)的优化策略、转移学习的实践应用以及增强学习与生成对
|
1天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别在自动驾驶技术中的应用
【4月更文挑战第30天】 随着人工智能技术的飞速发展,深度学习作为其重要分支之一,在图像识别领域取得了显著成果。特别是在自动驾驶技术中,基于深度学习的图像识别系统不仅增强了车辆对环境的感知能力,而且提高了决策系统的智能水平。本文将探讨深度学习在自动驾驶图像识别中的应用机制,分析关键技术挑战,并提出未来的发展趋势。通过综合现有文献和最新研究成果,我们旨在为读者提供一个关于该技术如何塑造未来交通生态的清晰视角。
|
1天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战移动应用开发的未来:跨平台框架与原生操作系统的融合
【4月更文挑战第30天】 随着人工智能的迅猛发展,深度学习技术已成为图像识别领域的核心竞争力。本文章将探讨深度学习在图像识别中的应用,并分析其面临的主要挑战。我们将从卷积神经网络(CNN)的基础架构出发,讨论其在图像分类、目标检测和语义分割等方面的应用案例,同时指出数据偏差、模型泛化能力以及对抗性攻击等问题对图像识别准确性的影响。通过实例分析和最新研究成果,本文旨在为读者提供一个关于深度学习在图像处理领域内应用的全面视角。
|
2天前
|
机器学习/深度学习 传感器 自动驾驶
探索基于深度学习的图像识别在自动驾驶技术中的应用
【4月更文挑战第29天】 在自动驾驶技术的迅猛发展中,图像识别作为其核心技术之一,正经历着从传统算法向基于深度学习方法的转变。本文深入探讨了深度学习在图像识别领域的应用及其对自动驾驶系统性能的影响。通过分析卷积神经网络(CNN)在特征提取、模式识别中的能力,以及循环神经网络(RNN)在序列数据处理上的优势,文章揭示了深度学习如何提升自动驾驶车辆对环境的感知能力。同时,考察了数据增强、迁移学习等策略在处理自动驾驶中的视觉问题上的实际效果和潜力。最后,讨论了目前技术面临的挑战及未来可能的发展方向。
|
2天前
|
机器学习/深度学习 监控 算法
基于深度学习的图像识别技术在智能监控系统中的应用
【4月更文挑战第29天】 随着人工智能技术的飞速发展,尤其是深度学习算法在图像处理领域的突破性进展,基于深度学习的图像识别技术已经成为智能视频监控系统的核心。本文将深入探讨深度学习技术如何提升监控系统中目标检测、分类和跟踪的准确性与效率,并分析其在实际应用中的优势与挑战,为未来智能监控技术的发展提供参考。