软件测试|Python科学计算神器numpy教程(十二)

简介: 软件测试|Python科学计算神器numpy教程(十二)

image.png

简介

NumPy是Python中用于科学计算的一个强大的库,其中包含了丰富的数学和统计函数。这些统计函数允许用户对数组进行各种统计计算,例如平均值、标准差、方差、最大值、最小值等。在本文中,我们将详细介绍NumPy中一些常用的统计函数及其用法。

统计函数示例

  1. numpy.amin() 和 numpy.amax()

这两个函数用于计算数组沿指定轴的最小值与最大值:

  • amin() 沿指定的轴,查找数组中元素的最小值,并以数组形式返回;
  • amax() 沿指定的轴,查找数组中元素的最大值,并以数组形式返回。

对于二维数组来说,axis=1 表示沿着水平方向,axis=0 表示沿着垂直方向。如下图:

image.png

示例如下:

import numpy as np
a = np.array([[3,7,5],[8,4,3],[2,4,9]])
print ('数组a是:')
print(a)
#amin()函数
print (np.amin(a))
#调用 amin() 函数,axis=1
print(np.amin(a,1))
#调用amax()函数
print(np.amax(a))
#再次调用amax()函数
print(np.amax(a,axis=0))

----------
输出结果如下:
我们的数组是:
[[3 7 5]
[8 4 3]
[2 4 9]]

调用amin()函数:
2

调用 amin(axis=1) 函数:
[3 3 2]

amax() 函数:
9
amax(axis=0) 函数:
[8 7 9]
  1. numpy.ptp()

numpy.ptp() 用于计算数组元素中最值之差值,也就是(最大值 - 最小值)。

示例如下:

import numpy as np 
a = np.array([[2,10,20],[80,43,31],[22,43,10]]) 
print("原数组",a) 
print("沿着axis 1:",np.ptp(a,1)) 
print("沿着axis 0:",np.ptp(a,0)) 

-------------
输出结果如下:
原数组 array:
[[ 2 10 20]
[80 43 31]
[22 43 10]]

沿着 axis 1: [18 49 33]
沿着 axis 0: [78 33 21]
  1. numpy.percentile()

百分位数,是统计学中使用的一种度量单位。该函数表示沿指定轴,计算数组中任意百分比分位数,语法格式如下:

numpy.percentile(a, q, axis)

函数 numpy.percentile() 的参数说明:

  • a:输入数组;
  • q:要计算的百分位数,在 0~100 之间;
  • axis:沿着指定的轴计算百分位数。

示例如下:

import numpy as np 
a = np.array([[2,10,20],[80,43,31],[22,43,10]]) 
print("数组a:",a) 
print("沿着axis=0计算百分位数",np.percentile(a,10,0)) 
print("沿着axis=1计算百分位数",np.percentile(a,10,1))

---------------
数组a:
[[ 2 10 20]
[80 43 31]
[22 43 10]]

沿着axis=0计算百分位数: [ 6.  16.6 12. ]
沿着axis=1计算百分位数: [ 3.6 33.4 12.4]
  1. numpy.median()

numpy.median() 用于计算 a 数组元素的中位数(中值):

import numpy as np
a = np.array([[30,65,70],[80,95,10],[50,90,60]])
#数组a:
print(a)
#median()
print np.median(a)
#axis 0
print np.median(a, axis = 0)
#axis 1:
print(np.median(a, axis = 1))

-----------------
输出结果如下:
数组a:
[[30 65 70]
[80 95 10]
[50 90 60]]
调用median()函数:
65.0
median(axis=0):
[ 50. 90. 60.]
median(axis=1):
[ 65. 80. 60.]
  1. numpy.mean()

该函数表示沿指定的轴,计算数组中元素的算术平均值(即元素之总和除以元素数量)。

示例如下:

import numpy as np
a = np.array([[1,2,3],[3,4,5],[4,5,6]]) 
print ('我们的数组是:')
print (a)
print ('调用 mean() 函数:')
print (np.mean(a))
print ('沿轴 0 调用 mean() 函数:')
print (np.mean(a, axis =  0))
print ('沿轴 1 调用 mean() 函数:')
print (np.mean(a, axis =  1))

----------------
输出结果如下:
我们的数组是:
[[1 2 3]
[3 4 5]
[4 5 6]]

调用 mean() 函数:
3.6666666666666665

沿轴 0 调用 mean() 函数:
[2.66666667 3.66666667 4.66666667]

沿轴 1 调用 mean() 函数:
[2. 4. 5.]
  1. numpy.average()

加权平均值是将数组中各数值乘以相应的权数,然后再对权重值求总和,最后以权重的总和除以总的单位数(即因子个数)。

numpy.average() 根据在数组中给出的权重,计算数组元素的加权平均值。该函数可以接受一个轴参数 axis,如果未指定,则数组被展开为一维数组。

下面举一个简单的示例:现有数组 [1,2,3,4] 和相应的权重数组 [4,3,2,1],它的加权平均值计算如下:

加权平均值=1 * 4 + 2 * 3 + 3 * 2 + 4 * 1/4 + 3 + 2 + 1

使用 average() 计算加权平均值,代码如下:

import numpy as np
a = np.array([1,2,3,4]) 
print('a数组是:')
print(a)
#average()函数:
print (np.average(a))
# 若不指定权重相当于对数组求均值
we = np.array([4,3,2,1]) 
#调用 average() 函数:')
print(np.average(a,weights = we))
#returned 为Ture,则返回权重的和 
prin(np.average([1,2,3,4],weights =  [4,3,2,1], returned =  True))

-----------------
输出结果如下:
a数组是:
[1 2 3 4]

无权重值时average()函数:
2.5

有权重值时average()函数:
2.0

元组(加权平均值,权重的和)(2.0, 10.0)
  1. numpy.var()

示例如下:

import numpy as np
print (np.var([1,2,3,4]))

--------------
输出结果如下:
1.25
  1. numpy.std()

标准差是方差的算术平方根,用来描述一组数据平均值的分散程度。若一组数据的标准差较大,说明大部分的数值和其平均值之间差异较大;若标准差较小,则代表这组数值比较接近平均值。它的公式如下:

std = sqrt(mean((x - x.mean())**2

NumPy 中使用 np.std() 计算标准差。示例如下:

import numpy as np
print (np.std([1,2,3,4]))

------------------------
1.1180339887498949

总结

NumPy提供了丰富的统计函数,可以方便地对数组进行各种统计计算,例如平均值、中位数、标准差、方差、最大值、最小值等。这些函数在数据分析、科学计算和机器学习等领域中扮演着重要角色。通过灵活运用这些统计函数,我们可以更好地理解和处理数据,并进行相应的数据分析和预测。在日常使用中,建议多熟悉这些函数的用法,以提高Python在科学计算方面的应用水平。

相关文章
|
12天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
41 8
|
12天前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
32 7
|
12天前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
36 4
|
12天前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
31 5
|
1月前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之 Scipy 显著性检验第9部分,介绍了显著性检验的基本概念、作用及原理,通过样本信息判断假设是否成立。着重讲解了使用scipy.stats模块进行显著性检验的方法,包括正态性检验中的偏度和峰度计算,以及如何利用normaltest()函数评估数据是否符合正态分布。示例代码展示了如何计算一组随机数的偏度和峰度。
29 1
|
3月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
110 0
|
4月前
|
机器学习/深度学习 数据处理 计算机视觉
NumPy实践宝典:Python高手教你如何轻松玩转数据处理!
【8月更文挑战第22天】NumPy是Python科学计算的核心库,专长于大型数组与矩阵运算,并提供了丰富的数学函数。首先需安装NumPy (`pip install numpy`)。之后可通过创建数组、索引与切片、执行数学与逻辑运算、变换数组形状及类型、计算统计量和进行矩阵运算等操作来实践学习。NumPy的应用范围广泛,从基础的数据处理到图像处理都能胜任,是数据科学领域的必备工具。
66 0
|
1月前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
51 3
|
1月前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
69 2
|
3月前
|
机器学习/深度学习 算法 数据可视化
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
特征工程是机器学习流程中的关键步骤,通过将原始数据转换为更具意义的特征,增强模型对数据关系的理解能力。本文重点介绍处理数值变量的高级特征工程技术,包括归一化、多项式特征、FunctionTransformer、KBinsDiscretizer、对数变换、PowerTransformer、QuantileTransformer和PCA,旨在提升模型性能。这些技术能够揭示数据中的潜在模式、优化变量表示,并应对数据分布和内在特性带来的挑战,从而提高模型的稳健性和泛化能力。每种技术都有其独特优势,适用于不同类型的数据和问题。通过实验和验证选择最适合的变换方法至关重要。
62 5
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征