Java中如何进行加锁??

简介: Java中如何进行加锁??

笔者在上篇文章介绍了线程安全的问题,接下来本篇文章就是来讲解如何避免线程安全问题~~

前言:创建两个线程,每个线程都实现对同一个变量count各自自增5W次,我们来看一下代码:

class Counter{
    private int count=0;
    public void add(){
        count++;
    }
    public int get(){
        return count;
    }
}
public class Main2 {
    public static void main(String[] args) throws InterruptedException{
        Counter counter=new Counter();
        //搞两个线程,两个线程分别对这个count自增5W次
        //线程1
        Thread t1=new Thread(()->{
            for (int i = 0; i < 50000; i++) {
                counter.add();
            }
        });
        //线程2
        Thread t2=new Thread(()->{
            for (int i = 0; i < 50000; i++) {
                counter.add();
            }
        });
        //启动线程
        t1.start();
        t2.start();
        //等待两个线程执行结束,然后看一下结果
        t1.join();
        t2.join();
        System.out.println(counter.get());
        //预期结果是10W,但是,实际结果像是一个随机值,每次执行的结果都不一样
    }
}

上述代码的运行结果是不确定的,是一个随即值,多次刷新重新运行,结果大概率是不一样的~,预期效果个代码的运行结果不一样,这就是Bug——》线程安全问题!

通过加锁来有效避免线程安全问题:

Synchronized是Java中的关键字,可以使用这个关键字来实现加锁的效果~

public void add(){
       // count++;
        synchronized (this){
            //这里的this可以写任意一个Object对象(基本数据类型不可)
            //此处写了this就相当于Counter counter=new Counter();中的counter
            count++;
        }
    }

那么,我们来看一下此时代码的运行结果~

符合我们预期的一个效果~

锁有两个核心的操作,加锁和解锁;

此处使用代码块的方式来表示:进入synchronized修饰的代码块的时候,就会触发加锁,出了synchronized代码块就会触发解锁,{ }就相当于WC~~

在上述代码中:synchronized(this)——》this是指:锁对象(在针对哪个对象?)!

如果两个线程针对同一个对象加锁,此时就会出现“锁竞争”(一个线程先拿到锁,另一个线程阻塞等待)!

如果两个线程针对不同的对象加锁,此时不好存在锁竞争,各种获取各自锁即可!

加锁本质上是把并发的变成了串行的~

join()和加锁不一样:

join()是让两个线程完整的进行串行~

加锁是让两个线程的某小部分串行了,大部分都是并发的!!

加锁:在保证线程安全的前提下,同时还能够让代码跑的更快一些,更好的利用CPU,无论如何,加锁都可能导致阻塞,代码阻塞对应程序的效率肯定还是会有影响的,此处虽然加锁了,比不加锁要慢点,肯定还是比串行要更快,同时比不加锁算得更准!!

如果直接给方法使用synchronized修饰,此时就相当于this为加锁对象!!

如果synchronized修饰静态方法static(),此时就算不给this加锁了,而是给类对象加锁!!

更常见的还是自己手动指定一个锁对象:

//自己手动指定锁对象
    private Object locker=new Object();
    public void add(){
        synchronized (locker){
            //这里的locker可以写任意一个Object对象(基本数据类型不可)
            count++;
        }
    }

要牢记:如果多个线程尝试对同一对象加锁,此时就会产生锁竞争!!针对不同的锁对象加锁,就不会有锁竞争~

另一个线程不安全的场景:由于内存可见性,所引起的线程不安全~

先写一个带有Bug的代码:

import java.util.Scanner;
public class Main3 {
    public static int flag=0;
    public static void main(String[] args) {
        Thread t1=new Thread(()->{
            while (flag==0){
                //空着,啥都没有
            }
            System.out.println("循环结束,t1结束");
        });
        Thread t2=new Thread(()->{
            Scanner scanner=new Scanner(System.in);
            System.out.println("请输入一个整数: ");
            flag=scanner.nextInt();
        });
        t1.start();
        t2.start();
    }
}

对该段代码的预期效果:t1通过flag=0作为条件,进行循环,初始情况下,将进入循环,t2通过控制台输入一个整数,一旦用户输入非0的值,此时t1的循环就会立即结束,从而t1线程退出!!

但是,实际的效果:输入非0的值之后,t1线程并没有退出,循环没有结束!通过jconsole可以看到t1线程仍然在执行,处在RUNNABLE状态。

实际效果 !=预期效果——》这就是Bug

为啥有这个问题??这就是内存可见性的锅!!

所谓的内存可见性,就是多线程环境下,,编辑器对于代码优化产生了误判,从而引起了Bug,进一步导致了咱们的Bug,咱们的处理方式:就是让编辑器针对这个场景暂停优化!!使用Volatile关键字,被volatile修饰的变量,此时编辑器就会紧张上述优化,从而能够确保每次都是从内存中重新读取数据~

即:针对上述代码的更改:

volatile public static int flag=0;

加上volatile关键字之后,此时编辑器就能够保证每次都是重新从内存读取flag变量的值,此时t2修饰flag,t1就可以立即感知到了,因此t1就可以正确退出了~

volatile不保证原子性(注意)

volatile适用的场景是一个线程读,一个线程写的情况

synchronized则是多个线程写

volatile的这个效果称为:“保证内存可见性”

synchronized不确定能不能保证内存可见性

volatile还有一个效果:禁止指令重排序!指令重排序也是编辑器优化的策略(调整了代码执行的顺序,,让程序更高效,前台也是保证整体逻辑不变)

关于volatile和内存可见性的补充~

网上有效资料:线程修改一个变量,会把这个变量先从主内存读取到工作内存,然后修改工作内存的值,再写回到主内存中~

内存可见性:t1频繁读取主内存,效率比较低,就被优化成直接读取自己的工作内存,t1修改了主内存的结果,由于t1没有读取主内存导致修改不能被识别到!!

工作内存《——》CPU寄存器

主内存《——》内存

相关文章
|
1天前
|
Java 程序员 开发者
深入理解Java并发编程:线程同步与锁机制
【4月更文挑战第30天】 在多线程的世界中,确保数据的一致性和线程间的有效通信是至关重要的。本文将深入探讨Java并发编程中的核心概念——线程同步与锁机制。我们将从基本的synchronized关键字开始,逐步过渡到更复杂的ReentrantLock类,并探讨它们如何帮助我们在多线程环境中保持数据完整性和避免常见的并发问题。文章还将通过示例代码,展示这些同步工具在实际开发中的应用,帮助读者构建对Java并发编程深层次的理解。
|
1天前
|
安全 Java 开发者
Java中的读写锁ReentrantReadWriteLock详解,存在一个小缺陷
Java中的读写锁ReentrantReadWriteLock详解,存在一个小缺陷
12 2
|
23小时前
|
Java 编译器 开发者
Java并发编程中的锁优化策略
【5月更文挑战第15天】 在Java的多线程编程中,锁机制是实现线程同步的关键。然而,不当的锁使用往往导致性能瓶颈甚至死锁。本文深入探讨了Java并发编程中针对锁的优化策略,包括锁粗化、锁消除、锁分离以及读写锁的应用。通过具体实例和性能分析,我们将展示如何有效避免竞争条件,减少锁开销,并提升应用程序的整体性能。
|
1天前
|
消息中间件 安全 前端开发
字节面试:说说Java中的锁机制?
Java 中的锁(Locking)机制主要是为了解决多线程环境下,对共享资源并发访问时的同步和互斥控制,以确保共享资源的安全访问。 锁的作用主要体现在以下几个方面: 1. **互斥访问**:确保在任何时刻,只有一个线程能够访问特定的资源或执行特定的代码段。这防止了多个线程同时修改同一资源导致的数据不一致问题。 2. **内存可见性**:通过锁的获取和释放,可以确保在锁保护的代码块中对共享变量的修改对其他线程可见。这是因为 Java 内存模型(JMM)规定,对锁的释放会把修改过的共享变量从线程的工作内存刷新到主内存中,而获取锁时会从主内存中读取最新的共享变量值。 3. **保证原子性**:锁
16 1
|
1天前
|
Java 编译器 开发者
Java并发编程中的锁优化策略
【5月更文挑战第13天】在Java并发编程中,锁是一种重要的同步机制,用于保证多线程环境下数据的一致性。然而,不当的使用锁可能会导致性能下降,甚至产生死锁等问题。本文将介绍Java中锁的优化策略,包括锁粗化、锁消除、锁降级等,帮助开发者提高程序的性能。
|
1天前
|
安全 Java 数据安全/隐私保护
【JAVA进阶篇教学】第十一篇:Java中ReentrantLock锁讲解
【JAVA进阶篇教学】第十一篇:Java中ReentrantLock锁讲解
|
1天前
|
安全 Java
【JAVA进阶篇教学】第十篇:Java中线程安全、锁讲解
【JAVA进阶篇教学】第十篇:Java中线程安全、锁讲解
|
1天前
|
安全 Java 程序员
【Java多线程】面试常考——锁策略、synchronized的锁升级优化过程以及CAS(Compare and swap)
【Java多线程】面试常考——锁策略、synchronized的锁升级优化过程以及CAS(Compare and swap)
12 0
|
1天前
|
Java
【Java多线程】分析线程加锁导致的死锁问题以及解决方案
【Java多线程】分析线程加锁导致的死锁问题以及解决方案
20 1
|
1天前
|
缓存 Java 数据库
Java并发编程中的锁优化策略
【5月更文挑战第9天】 在高负载的多线程应用中,Java并发编程的高效性至关重要。本文将探讨几种常见的锁优化技术,旨在提高Java应用程序在并发环境下的性能。我们将从基本的synchronized关键字开始,逐步深入到更高效的Lock接口实现,以及Java 6引入的java.util.concurrent包中的高级工具类。文中还会介绍读写锁(ReadWriteLock)的概念和实现原理,并通过对比分析各自的优势和适用场景,为开发者提供实用的锁优化策略。
8 0