logstash 与ElasticSearch:从CSV文件到搜索宝库的导入指南

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: logstash 与ElasticSearch:从CSV文件到搜索宝库的导入指南

logstash 与ElasticSearch:从CSV文件到搜索宝库的导入指南

使用 logstash 导入数据到 ES 时,由三个步骤组成:input、filter、output。整个导入过程可视为:unix 管道操作,而管道中的每一步操作都是由 "插件" 实现的。使用 ./bin/logstash-plugin list 查看 logstash 已安装的插件。

每个插件的选项都可以在官网查询,先明确是哪一步操作,然后去官方文档看是否有相应的插件是否支持这种操作。比如 output 配置选项:plugins-outputs-elasticsearch-options),其中的 doc_id 选项就支持 指定 docid 写入 ES。在这里,简要说明一些常用的插件,要想了解它们实现的功能可参考官方文档。

  1. mutate 插件 用于字段文本内容处理,比如 字符替换
  2. csv 插件 用于 csv 格式文件导入 ES
  3. convert 插件 用于字段类型转换
  4. date 插件 用于日期类型的字段处理

使用 logstash 导入时,默认以 "message" 标识 每一行数据,并且会生成一些额外的字段,比如 @version、host、@timestamp,如果用不着,这些字段可以去除掉 ,此外,要注意 ES 中的索引的格式 (Mapping 结构),最好是指定自定义的索引模板,保证索引最 "精简"。

另外这里记录一些常用的参数及其作用,更具体的解释可查看官方文档。

  1. sincedb_path 告诉 logstash 记录文件已经处理到哪一行了,从而当 logstash 发生故障重启时,可从故障点处开始导入,避免从头重新导入。
  2. remove_field 删除某些字段

配置文件完成后,执行以下命令./bin/logstash -f csvfile_logstash.conf 即可启动 logstash 执行导入操作。

以下是各种错误解决:
错误一:

ConfigurationError”, :message=>”Expected one of #, input, filter, output at line 1, column 1

如果 配置文件内容是正确的,用 Notepad++ 检查一下文件的编码,确保是:UTF-8 无 BOM 格式编码

解决 SOH 分隔符问题

由于 csv 插件的 separator 选项不支持转义字符,因此无法用\u0001来代表 SOH。如果 csv 文件以 SOH 分隔符 (\u0001) 分割,一种方案是使用 mutate 插件替换,将\u0001替换成逗号。如下所示:

    mutate{
        # 每一行内容默认是message, 将分隔符 \u0001 替换成 逗号
        gsub => [ "message","\u0001","," ]
        # @timestamp 字段是默认生成的, 名称修改成 created
        rename => ["@timestamp", "created"]
    }

但是实际上 logstash6.8.3 是支持按 SOH 分割的。在 Linux shell 下,先按 ctrl+v,再按 ctrl+a,输入的就是 SOH。那么在 vim 中打开配置文件,在 vim 的 insert 模式下,先按 ctrl+v,再按 ctrl+a,将 SOH 作为 csv 插件的 separator 分割符。

    csv {
            # 每行按逗号分割, 生成2个字段: topsid 和 title, (如果分割超过2列了,第三列则以 column3 命名)
            separator => ""
            columns => ["topsid", "title"]
            # 删除一些不需要索引到ES中去的字段(logstash默认生成的一些字段)
            remove_field => ["host", "@timestamp", "@version", "message","path"]
        }

一个将 csv 文件内容导入 ES 的示例配置模板如下:(csv 文件中的每一行以 SOH 作为分割符)

  • logstash input 插件支持多种数据来源,比如 kafka、beats、http、file 等。在这里我们的数据来源是文件,因此采用了 logstash input file 插件。
  • 把数据从文件中读到 logstash 后,可能需要对文件内容 / 格式 进行处理,比如分割、类型转换、日期处理等,这由 logstash filter 插件实现。在这里我们进行了文件的切割和类型转换,因此使用的是 logstash filter csv 插件和 mutate 插件。
  • 处理成我们想要的字段后,接下来就是导入到 ES,那么就需要配置 ES 的地址、索引名称、Mapping 结构信息 (使用指定模板写入),这由 logstash output 插件实现,在这里我们把处理后的数据导入 ES,因此使用的是 logstash output elasticsearch 插件。
input {
  file {
      path => "/data/psj/test/*.csv"
      start_position => "beginning"
      sincedb_path => "/dev/null"
    }
}

filter {
    csv {
            # 每行按逗号分割, 生成2个字段: topsid 和 title, (如果分割超过2列了,第三列则以 column3 命名)
            separator => ""
            columns => ["topsid", "title"]
            # 删除一些不需要索引到ES中去的字段(logstash默认生成的一些字段)
            remove_field => ["host", "@timestamp", "@version", "message","path"]

        }            
    mutate {
    convert => {
        # 类型转换
        "topsid" => "integer"
        "title" => "string"
    }
  }
}

output {
   elasticsearch {
        hosts => "http://http://127.0.0.1:9200"
        index => "chantitletest"
        # 指定 文档的 类型为 "_doc"
        document_type => "_doc"
        # 指定doc id 为topsid字段的值
        document_id => "%{topsid}"
        manage_template => true
        # 使用自定义的模板写入,否则将会以logstash默认模板写入
        template => "/data/services/logstash-6.8.3/config/chantitletpe.json"
        template_overwrite => true
        template_name => "chantitletpe"
       }
    stdout{
        codec => json_lines
    }
}

(也可以采用 logstash filter 插件的 mutate 选项 将 SOH 转换成逗号):

filter {
    mutate{
        # 每一行内容默认是message, 将分隔符 \u0001 替换成 逗号
        gsub => [ "message","\u0001","," ]
        # @timestamp 字段是默认生成的, 名称修改成 created
        rename => ["@timestamp", "created"]
    }
    csv {
        # 每行按逗号分割, 生成2个字段: topsid 和 title, (如果分割超过2列了,第三列则以 column3 命名)
            separator => ","
            columns => ["topsid", "title"]
            # 删除一些不需要索引到ES中去的字段(logstash默认生成的一些字段)
            remove_field => ["host", "@timestamp", "@version", "message","path"]
        }            
    mutate {
    convert => {
        # 类型转换
        "topsid" => "integer"
        "title" => "string"
    }
  }
}

使用的自定义模板如下:

{
  "index_patterns": [
    "chantitle_v1",
    "chantitletest"
  ],
  "settings": {
    "number_of_shards": 3,
    "analysis": {
      "analyzer": {
        "my_hanlp_analyzer": {
          "tokenizer": "my_hanlp"
        },
        "pinyin_analyzer": {
          "tokenizer": "my_pinyin"
        }
      },
      "tokenizer": {
        "my_hanlp": {
          "enable_normalization": "true",
          "type": "hanlp_standard"
        },
        "my_pinyin": {
          "keep_joined_full_pinyin": "true",
          "lowercase": "true",
          "keep_original": "true",
          "remove_duplicated_term": "true",
          "keep_first_letter": "false",
          "keep_separate_first_letter": "false",
          "type": "pinyin",
          "limit_first_letter_length": "16",
          "keep_full_pinyin": "true"
        }
      }
    }
  },
  "mappings": {
    "_doc": {
      "properties": {
        "created": {
          "type": "date",
          "doc_values": false,
          "format": "yyyy-MM-dd HH:mm:ss"
        },
        "title": {
          "type": "text",
          "fields": {
            "pinyin": {
              "type": "text",
              "boost": 10,
              "analyzer": "pinyin_analyzer"
            },
            "raw": {
              "type": "keyword",
              "doc_values": false
            }
          },
          "analyzer": "my_hanlp_analyzer"
        },
        "topsid": {
          "type": "long",
          "doc_values": false
        }
      }
    }
  }
}

上面给了一个 csv 文件导入 ES,这里再给个 txt 文件导入 ES 吧。txt 以逗号分割,每列的内容都在冒号里面,只需要前 4 列内容,一行示例数据如下:

"12345","12345","研讨区","12345","500","xxxx","2008-08-04 22:20:24","0","300","0","5","0","","0","0","","","0","0"

这里采用的是 logstash filter 的 dissect 插件。相比于 grok 插件,它的优点不是采用正规匹配的方式解析数据,速度较快,但不能解析复杂数据。只能够对较为规律的数据进行导入。logstash 配置文件如下:

input {
  file {
      path => "/data/psj/test/*.txt"
      start_position => "beginning"
      # sincedb_path => "/dev/null"
    }
}

filter {
  dissect {
      mapping => {
        # 插件输入的每一行数据默认名称是message,由于每列数据在双引号里面,因此解析前4列数据的写法如下:
        "message" => '"%{topsid}","%{subsid}","%{subtitle}","%{pid}"'
      }
      # 删除自动生成的、用不着的一些字段
      remove_field => ["host", "@timestamp", "@version", "message","path"]
      convert_datatype => {
        # 类型转换
        "topsid" => "int"
        "subsid" => "int"
        "pid" => "int"
    }
    }
}

output {
   elasticsearch {
        hosts => "http://127.0.0.1:9200"
        index => "chansubtitletest"
        document_type => "_doc"
        # 指定doc id 为topsid字段的值
        document_id => "%{subsid}"
        manage_template => true
        # 使用自定义的模板写入,否则将会以logstash默认模板写入
        template => "/data/services/logstash-6.8.3/config/chansubtitle.json"
        template_overwrite => true
        template_name => "chansubtitle"
       }
    stdout{
        codec => json_lines
    }
}

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
1月前
|
存储 自然语言处理 BI
|
3月前
|
SQL JSON 大数据
ElasticSearch的简单介绍与使用【进阶检索】 实时搜索 | 分布式搜索 | 全文搜索 | 大数据处理 | 搜索过滤 | 搜索排序
这篇文章是Elasticsearch的进阶使用指南,涵盖了Search API的两种检索方式、Query DSL的基本语法和多种查询示例,包括全文检索、短语匹配、多字段匹配、复合查询、结果过滤、聚合操作以及Mapping的概念和操作,还讨论了Elasticsearch 7.x和8.x版本中type概念的变更和数据迁移的方法。
ElasticSearch的简单介绍与使用【进阶检索】 实时搜索 | 分布式搜索 | 全文搜索 | 大数据处理 | 搜索过滤 | 搜索排序
|
13天前
|
存储 缓存 固态存储
Elasticsearch高性能搜索
【11月更文挑战第1天】
31 6
|
11天前
|
API 索引
Elasticsearch实时搜索
【11月更文挑战第2天】
27 1
|
17天前
|
存储 监控 安全
|
1月前
|
人工智能
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
172 2
|
1月前
|
Web App开发 JavaScript Java
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
这篇文章是关于如何使用Spring Boot整合Elasticsearch,并通过REST客户端操作Elasticsearch,实现一个简单的搜索前后端,以及如何爬取京东数据到Elasticsearch的案例教程。
175 0
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
|
2月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
|
3月前
|
人工智能 自然语言处理 搜索推荐
阿里云Elasticsearch AI搜索实践
本文介绍了阿里云 Elasticsearch 在AI 搜索方面的技术实践与探索。
19151 21
|
2月前
|
存储 缓存 自然语言处理
深度解析ElasticSearch:构建高效搜索与分析的基石
【9月更文挑战第8天】在数据爆炸的时代,如何快速、准确地从海量数据中检索出有价值的信息成为了企业面临的重要挑战。ElasticSearch,作为一款基于Lucene的开源分布式搜索和分析引擎,凭借其强大的实时搜索、分析和扩展能力,成为了众多企业的首选。本文将深入解析ElasticSearch的核心原理、架构设计及优化实践,帮助读者全面理解这一强大的工具。
182 7