图书推荐管理系统Python+Django网页界面+协同过滤推荐算法

简介: 图书推荐管理系统Python+Django网页界面+协同过滤推荐算法

一、介绍

图书管理与推荐系统。使用Python作为主要开发语言。前端采用HTML、CSS、BootStrap等技术搭建界面结构,后端采用Django作为逻辑处理,通过Ajax等技术实现数据交互通信。在图书推荐方面使用经典的协同过滤算法作为推荐算法模块。主要功能有:

  • 角色分为普通用户和管理员
  • 普通用户可注册、登录、查看图书、发布评论、收藏图书、对图书评分、借阅图书、归还图书、查看个人借阅、个人收藏、猜你喜欢(针对当前用户个性化推荐图书)
  • 管理员可以管理图书以及用户信息

    二、部分效果展示图片

    image.png
    image.png
    image.png
    image.png

三、演示视频 and 代码 and 介绍

视频+代码+介绍:yuque.com/ziwu/yygu3z/kpq3wsbzgif4vkpi

四、协同过滤算法

协同过滤(Collaborative Filtering, CF)是推荐系统中的一种常用方法。它基于一个简单的假设:过去喜欢相似物品的用户在未来也可能喜欢相似的物品。
协同过滤的特点:

  1. 个性化推荐:它可以为每个用户提供个性化的推荐,因为它是基于用户的历史行为来做推荐的。
  2. 无需物品内容:CF方法不需要对物品的内容进行分析,只需要用户的交互数据。
  3. 冷启动问题:协同过滤受到所谓的“冷启动”问题的困扰,即新用户或新物品缺乏足够的交互数据来做出准确的推荐。

下面是一个简单的基于用户的协同过滤的Python示例代码:

from scipy.spatial.distance import cosine

# 模拟用户评分数据
user_ratings = {
   
   
    'Alice': {
   
   'Item1': 5, 'Item2': 3, 'Item3': 4},
    'Bob': {
   
   'Item1': 3, 'Item2': 1, 'Item3': 2},
    'Charlie': {
   
   'Item1': 4, 'Item2': 2, 'Item3': 5}
}

def compute_similarity(user1, user2):
    """计算两个用户之间的相似度,使用余弦相似度"""
    common_ratings = set(user1.keys()) & set(user2.keys())
    if not common_ratings:
        return 0

    # 提取两个用户的评分向量
    vec1 = [user1[item] for item in common_ratings]
    vec2 = [user2[item] for item in common_ratings]

    return 1 - cosine(vec1, vec2)

def get_recommendations(target_user, user_ratings):
    """为目标用户推荐物品"""
    total_scores = {
   
   }
    total_similarity = {
   
   }

    # 遍历每一个用户
    for user, ratings in user_ratings.items():
        if user == target_user:
            continue

        # 计算相似度
        similarity = compute_similarity(user_ratings[target_user], ratings)

        for item, score in ratings.items():
            if item not in user_ratings[target_user]:
                total_scores.setdefault(item, 0)
                total_scores[item] += score * similarity

                total_similarity.setdefault(item, 0)
                total_similarity[item] += similarity

    # 计算加权平均得分
    rankings = [(item, total_scores[item] / total_similarity[item]) 
                for item in total_scores]

    # 返回排序后的推荐列表
    return sorted(rankings, key=lambda x: x[1], reverse=True)

# 为Alice推荐物品
print(get_recommendations('Alice', user_ratings))

代码注释:

  • 首先,我们模拟了三个用户的评分数据。
  • compute_similarity 函数计算两个用户之间的相似度,这里我们使用余弦相似度。
  • get_recommendations 函数为目标用户推荐物品。它考虑了与目标用户相似的用户对物品的评分,并使用加权平均的方式来计算推荐分数。

这只是协同过滤的一个简单示例,实际应用中还需要考虑许多其他因素和优化手段。

目录
相关文章
|
4月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
323 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
23天前
|
前端开发 JavaScript 关系型数据库
基于python的租房网站-房屋出租租赁系统(python+django+vue)源码+运行
该项目是基于python/django/vue开发的房屋租赁系统/租房平台,作为本学期的课程作业作品。欢迎大家提出宝贵建议。
57 6
|
2月前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
|
3月前
|
算法 安全 Go
公司局域网管理系统里的 Go 语言 Bloom Filter 算法,太值得深挖了
本文探讨了如何利用 Go 语言中的 Bloom Filter 算法提升公司局域网管理系统的性能。Bloom Filter 是一种高效的空间节省型数据结构,适用于快速判断元素是否存在于集合中。文中通过具体代码示例展示了如何在 Go 中实现 Bloom Filter,并应用于局域网的 IP 访问控制,显著提高系统响应速度和安全性。随着网络规模扩大和技术进步,持续优化算法和结合其他安全技术将是企业维持网络竞争力的关键。
75 2
公司局域网管理系统里的 Go 语言 Bloom Filter 算法,太值得深挖了
|
3月前
|
数据采集 人工智能 编解码
算法系统协同优化,vivo与港中文推出BlueLM-V-3B,手机秒变多模态AI专家
BlueLM-V-3B是由vivo与香港中文大学共同研发的多模态大型语言模型,专为移动设备优化。它通过算法和系统协同优化,实现了高效部署和快速生成速度(24.4 token/s),并在OpenCompass基准测试中取得优异成绩(66.1分)。模型小巧,语言部分含27亿参数,视觉编码器含4000万参数,适合移动设备使用。尽管如此,低端设备可能仍面临资源压力,实际应用效果需进一步验证。论文链接:https://arxiv.org/abs/2411.10640。
84 9
|
3月前
|
算法
基于电导增量MPPT控制算法的光伏发电系统simulink建模与仿真
本课题基于电导增量MPPT控制算法,使用MATLAB2022a的Simulink进行光伏发电系统的建模与仿真,输出系统电流、电压及功率。电导增量调制(IC)算法通过检测电压和电流变化率,实时调整光伏阵列工作点,确保其在不同光照和温度条件下始终处于最大功率输出状态。仿真结果展示了该算法的有效性,并结合PWM技术调节逆变流器占空比,提高系统效率和稳定性。
|
2月前
|
存储 人工智能 算法
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统
阿里云向量检索服务Milvus 2.5版本在全文检索、关键词匹配以及混合检索(Hybrid Search)方面实现了显著的增强,在多模态检索、RAG等多场景中检索结果能够兼顾召回率与精确性。本文将详细介绍如何利用 Milvus 2.5 版本实现这些功能,并阐述其在RAG 应用的 Retrieve 阶段的最佳实践。
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统
|
3月前
|
存储 监控 算法
员工屏幕监控系统之 C++ 图像差分算法
在现代企业管理中,员工屏幕监控系统至关重要。本文探讨了其中常用的图像差分算法,该算法通过比较相邻两帧图像的像素差异,检测屏幕内容变化,如应用程序切换等。文中提供了C++实现代码,并介绍了其在实时监控、异常行为检测和数据压缩等方面的应用,展示了其实现简单、效率高的特点。
84 15
|
5月前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
153 66
|
3月前
|
存储 算法 量子技术
解锁文档管理系统高效检索奥秘:Python 哈希表算法探究
在数字化时代,文档管理系统犹如知识宝库,支撑各行各业高效运转。哈希表作为核心数据结构,通过哈希函数将数据映射为固定长度的哈希值,实现快速查找与定位。本文聚焦哈希表在文档管理中的应用,以Python代码示例展示其高效检索特性,并探讨哈希冲突解决策略,助力构建智能化文档管理系统。

热门文章

最新文章