Golang 语言中数组和切片的区别是什么?

简介: Golang 语言中数组和切片的区别是什么?

01

介绍

在很多编程语言中都有数组,而切片类型却不常见。实际上,Golang 语言中的切片的底层存储也是基于数组。因为数组是固定长度的,而切片比数组更加灵活,所以在 Golang 语言中,数组使用的并不多,切片使用更加广泛。

数组和切片的区别

  • 数组的零值是元素类型的零值,切片的零值是 nil;
  • 数组是固定长度,切片是可变长度;
  • 数组是值类型,切片是引用类型。

数组:

func main () {
    var arr1 [4]int
    fmt.Printf("arr1 val:%d arr1 len:%d arr1 cap:%d\n", arr1, len(arr1), cap(arr1))
    arr := [4]int{}
    fmt.Printf("val:%d len:%d cap:%d\n", arr, len(arr), cap(arr)) // val:[0 0 0 0] len:4 cap:4
    arr[0] = 1
    arr[1] = 2
    arr[2] = 3
    arr[3] = 4
    // arr[4] = 5 // invalid array index 4 (out of bounds for 4-element array)
    fmt.Printf("val:%d len:%d cap:%d\n", arr, len(arr), cap(arr)) // val:[1 2 3 4] len:4 cap:4
    arr2 := arr
 fmt.Printf("arr2 val:%d len:%d cap:%d ptr:%p\n", arr2, len(arr2), cap(arr2), &arr2) // arr2 val:[1 2 3 4] len:4 cap:4 ptr:0xc0001980a0
 fmt.Printf("arr val:%d len:%d cap:%d ptr:%p\n", arr, len(arr), cap(arr), &arr) // arr val:[1 2 3 4] len:4 cap:4 ptr:0xc000198040
 ss := arr[:]
 ssPtr := (*reflect.SliceHeader)(unsafe.Pointer(&ss)).Data
 fmt.Printf("ss val:%d len:%d cap:%d ptr:%v\n", ss, len(ss), cap(ss), ssPtr) // ss val:[1 2 3 4] len:4 cap:4 ptr:824635392064
 ss2 := arr[:]
 ss2Ptr := (*reflect.SliceHeader)(unsafe.Pointer(&ss2)).Data
 fmt.Printf("ss2 val:%d len:%d cap:%d ptr:%v\n", ss2, len(ss2), cap(ss2), ss2Ptr) // ss2 val:[1 2 3 4] len:4 cap:4 ptr:824635392064
}

切片:

func main () {
  var s []int
 if s == nil {
  fmt.Println("nil")
 }
 fmt.Printf("s val:%d len:%d cap:%d\n", s, len(s), cap(s)) // s val:[] len:0 cap:0
 s = append(s, 1)
 fmt.Printf("s val:%d len:%d cap:%d\n", s, len(s), cap(s)) // s val:[1] len:1 cap:1
 s = append(s, 2)
 fmt.Printf("s val:%d len:%d cap:%d\n", s, len(s), cap(s)) // s val:[1 2] len:2 cap:2
 s = append(s, 3)
 fmt.Printf("s val:%d len:%d cap:%d\n", s, len(s), cap(s)) // s val:[1 2 3] len:3 cap:4
}

阅读上面这两段代码,我们可以发现数组的零值是元素类型的零值,而切片的零值是 nil,同时,nil 也是唯一可以和切片类型作比较的值。

数组中元素超越边界会引发错误,切片中元素超越边界会自动扩容,切片的扩容规则将在 Part 03 介绍。

数组是值类型,切片是引用类型。arr2 和 arr 的内存地址不同,它们是两块不同的内存空间;ss 和 ss2 的内存地址相同,它们指向同一个底层数组。

在 Golang 语言中传递数组属于值拷贝,如果数组的元素个数比较多或者元素类型的大小比较大时,直接将数组作为函数参数会造成性能损耗,可能会有读者想到使用数组指针作为函数参数,这样是可以避免性能损耗,但是在 Golang 语言中,更流行使用切片,关于这块内容,阅读完 Part 04 的切片数据结构,会有更加深入的理解。

03

切片扩容规则

通过阅读 Part 02 关于切片的这段代码,我们还可以看出切片的扩容规则,当一个切片的容量无法存储更多元素时,切片会自动扩容,它会生成一个容量更大的新切片,然后把原切片的元素和新元素一起拷贝到新切片中。

在原切片长度小于 1024 时,新切片的容量会按照原切片的 2 倍扩容,否则,新切片的容量会按照原切片的 1.25 倍扩容,此时需要注意的是,如果新切片的容量按照原切片的 1.25 倍扩容一次仍然无法存储新元素时,将会不断按照原切片的 1.25 倍扩容,直到新切片的容量可以存储原切片的元素和新元素为止。一般最终扩容后的新切片,它的容量会大于或等于原切片的容量。

需要注意的是,当切片的零值是 nil 时,切片此时还没有指向底层数组。但是切片的零值是可用的,当使用 append 向零值切片追加元素时,将会先给切片分配一个底层数组。

切片扩容实际是创建一个新的底层数组,把原切片的元素和新元素一起拷贝到新切片的底层数组中,原切片的底层数组将会被垃圾回收。

注意:切片的容量可以根据元素的个数的增多自动扩容,但是不会根据元素的个数的减少自动缩容。

04

切片数据结构

在 Golang 语言中,切片实际是一个结构体,源码如下所示:

// /usr/local/go/src/runtime/slice.go
type slice struct {
 array unsafe.Pointer
 len   int
 cap   int
}

阅读源码,我们可以发现先,slice 结构体包含 3 个字段:

  • array - 指向底层数组
  • len - 切片的长度
  • cap - 切片的容量

在 Golang 语言运行时中,一个切片类型的变量实际上就是 runtime.slice 结构体的实例,其中 arrray 字段是指针类型,指向切片的底层数组,len 是切片的长度,cap 是切片的容量,当使用 make 函数创建切片时,如果不指定 cap 参数的值,cap 的值就等于 len 的值。

05

切片编程技巧

如果已经认真阅读完以上内容,我们应该已经知道切片在每次扩容时都会将原切片底层数组的元素和新元素一起拷贝到新切片的底层数组,这种操作在元素比较多或者元素的类型大小比较大时,内存分配和拷贝的代价还是比较大的。

为了降低或避免内存分配和拷贝的代价,我们通常会为新创建的切片指定 cap 参数的值,比如:

s := make([]T, 0, cap)

但是,这种使用方式的前提是,我们可以预估切片的元素个数。

for range 遍历切片

通过使用 for range 遍历切片,每次遍历操作实际上是对遍历元素的拷贝。而使用 for 遍历切片,每次遍历是通过索引访问切片元素,性能会远高于通过 for range 遍历。

因此想要优化使用 for range 遍历切片的性能,可以使用空白标识符 _ 省略每次遍历返回的切片元素,改为使用切片索引取访问切片的元素。

普通方式:

func main () {
    s := make([]int, 0, 10000)
    for k, v := range s {
        fmt.Println(s, v)
    }
}

优化方式:

func main () {
    s := make([]int, 0, 10000)
    for k, _ := range s {
        fmt.Println(k, s[k])
    }
}

07

总结

本文我们先是介绍了数组和切片的区别,然后还介绍了一些关于切片的扩容规则、数据结构和使用技巧等。文中代码比较多,建议读者将代码拷贝到编辑器中,查看运行结果,从而可以更加深刻理解文中的内容。如果想了解更多数组和切片的内容,请阅读推荐阅读列表中的相关文章。

推荐阅读:

Go 语言学习之数组

Go 语言学习之 slice

参考资料:

https://blog.golang.org/slices-intro

https://tour.golang.org/moretypes/12

https://www.godesignpatterns.com/2014/05/arrays-vs-slices.html


目录
相关文章
|
6天前
|
监控 算法 Go
Golang深入浅出之-Go语言中的服务熔断、降级与限流策略
【5月更文挑战第4天】本文探讨了分布式系统中保障稳定性的重要策略:服务熔断、降级和限流。服务熔断通过快速失败和暂停故障服务调用来保护系统;服务降级在压力大时提供有限功能以保持整体可用性;限流控制访问频率,防止过载。文中列举了常见问题、解决方案,并提供了Go语言实现示例。合理应用这些策略能增强系统韧性和可用性。
56 0
|
6天前
|
分布式计算 Java Go
Golang深入浅出之-Go语言中的分布式计算框架Apache Beam
【5月更文挑战第6天】Apache Beam是一个统一的编程模型,适用于批处理和流处理,主要支持Java和Python,但也提供实验性的Go SDK。Go SDK的基本概念包括`PTransform`、`PCollection`和`Pipeline`。在使用中,需注意类型转换、窗口和触发器配置、资源管理和错误处理。尽管Go SDK文档有限,生态系统尚不成熟,且性能可能不高,但它仍为分布式计算提供了可移植的解决方案。通过理解和掌握Beam模型,开发者能编写高效的数据处理程序。
142 1
|
6天前
|
缓存 测试技术 持续交付
Golang深入浅出之-Go语言中的持续集成与持续部署(CI/CD)
【5月更文挑战第5天】本文介绍了Go语言项目中的CI/CD实践,包括持续集成与持续部署的基础知识,常见问题及解决策略。测试覆盖不足、版本不一致和构建时间过长是主要问题,可通过全面测试、统一依赖管理和利用缓存优化。文中还提供了使用GitHub Actions进行自动化测试和部署的示例,强调了持续优化CI/CD流程以适应项目需求的重要性。
57 1
|
6天前
|
Kubernetes Cloud Native Go
Golang深入浅出之-Go语言中的云原生开发:Kubernetes与Docker
【5月更文挑战第5天】本文探讨了Go语言在云原生开发中的应用,特别是在Kubernetes和Docker中的使用。Docker利用Go语言的性能和跨平台能力编写Dockerfile和构建镜像。Kubernetes,主要由Go语言编写,提供了方便的客户端库与集群交互。文章列举了Dockerfile编写、Kubernetes资源定义和服务发现的常见问题及解决方案,并给出了Go语言构建Docker镜像和与Kubernetes交互的代码示例。通过掌握这些技巧,开发者能更高效地进行云原生应用开发。
60 1
|
6天前
|
负载均衡 监控 Go
Golang深入浅出之-Go语言中的服务网格(Service Mesh)原理与应用
【5月更文挑战第5天】服务网格是处理服务间通信的基础设施层,常由数据平面(代理,如Envoy)和控制平面(管理配置)组成。本文讨论了服务发现、负载均衡和追踪等常见问题及其解决方案,并展示了使用Go语言实现Envoy sidecar配置的例子,强调Go语言在构建服务网格中的优势。服务网格能提升微服务的管理和可观测性,正确应对问题能构建更健壮的分布式系统。
31 1
|
6天前
|
消息中间件 Go API
Golang深入浅出之-Go语言中的微服务架构设计与实践
【5月更文挑战第4天】本文探讨了Go语言在微服务架构中的应用,强调了单一职责、标准化API、服务自治和容错设计等原则。同时,指出了过度拆分、服务通信复杂性、数据一致性和部署复杂性等常见问题,并提出了DDD拆分、使用成熟框架、事件驱动和配置管理与CI/CD的解决方案。文中还提供了使用Gin构建HTTP服务和gRPC进行服务间通信的示例。
32 0
|
6天前
|
Prometheus 监控 Cloud Native
Golang深入浅出之-Go语言中的分布式追踪与监控系统集成
【5月更文挑战第4天】本文探讨了Go语言中分布式追踪与监控的重要性,包括追踪的三个核心组件和监控系统集成。常见问题有追踪数据丢失、性能开销和监控指标不当。解决策略涉及使用OpenTracing或OpenTelemetry协议、采样策略以及聚焦关键指标。文中提供了OpenTelemetry和Prometheus的Go代码示例,强调全面可观测性对微服务架构的意义,并提示选择合适工具和策略以确保系统稳定高效。
140 5
|
6天前
|
负载均衡 算法 Go
Golang深入浅出之-Go语言中的服务注册与发现机制
【5月更文挑战第4天】本文探讨了Go语言中服务注册与发现的关键原理和实践,包括服务注册、心跳机制、一致性问题和负载均衡策略。示例代码演示了使用Consul进行服务注册和客户端发现服务的实现。在实际应用中,需要解决心跳失效、注册信息一致性和服务负载均衡等问题,以确保微服务架构的稳定性和效率。
22 3
|
6天前
|
前端开发 Go
Golang深入浅出之-Go语言中的异步编程与Future/Promise模式
【5月更文挑战第3天】Go语言通过goroutines和channels实现异步编程,虽无内置Future/Promise,但可借助其特性模拟。本文探讨了如何使用channel实现Future模式,提供了异步获取URL内容长度的示例,并警示了Channel泄漏、错误处理和并发控制等常见问题。为避免这些问题,建议显式关闭channel、使用context.Context、并发控制机制及有效传播错误。理解并应用这些技巧能提升Go语言异步编程的效率和健壮性。
30 5
Golang深入浅出之-Go语言中的异步编程与Future/Promise模式
|
6天前
|
监控 负载均衡 算法
Golang深入浅出之-Go语言中的协程池设计与实现
【5月更文挑战第3天】本文探讨了Go语言中的协程池设计,用于管理goroutine并优化并发性能。协程池通过限制同时运行的goroutine数量防止资源耗尽,包括任务队列和工作协程两部分。基本实现思路涉及使用channel作为任务队列,固定数量的工作协程处理任务。文章还列举了一个简单的协程池实现示例,并讨论了常见问题如任务队列溢出、协程泄露和任务调度不均,提出了解决方案。通过合理设置缓冲区大小、确保资源释放、优化任务调度以及监控与调试,可以避免这些问题,提升系统性能和稳定性。
28 6