C++算法前缀和的应用:分割数组的最大值的原理、源码及测试用例

简介: C++算法前缀和的应用:分割数组的最大值的原理、源码及测试用例

分割数组的最大值

相关知识点

C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例:付视频课程

二分 过些天整理基础知识

题目

给定一个非负整数数组 nums 和一个整数 m ,你需要将这个数组分成 m 个非空的连续子数组。

设计一个算法使得这 m 个子数组各自和的最大值最小。

示例 1:

输入:nums = [7,2,5,10,8], m = 2

输出:18

解释:

一共有四种方法将 nums 分割为 2 个子数组。

其中最好的方式是将其分为 [7,2,5] 和 [10,8] 。

因为此时这两个子数组各自的和的最大值为18,在所有情况中最小。

示例 2:

输入:nums = [1,2,3,4,5], m = 2

输出:9

示例 3:

输入:nums = [1,4,4], m = 3

输出:4

提示:

1 <= nums.length <= 1000

0 <= nums[i] <= 10^6

1 <= m <= min(50, nums.length)

解法一:暴力解法

时间复杂度O(nnm),n是nums的长度。vMaxSum共有m*n种状态,求每种状态需的时间复杂度是O(n)。vPreSum记录前缀和,vMaxSum[i][j] 记录将nums[0,j]分成i个子数组的最大和。j’取值范围[0,j),vMaxSum[i][j]就是所有max(vMaxSum[i-1][j’],vPreSum[j+1] - vPreSum[j’])的最小值。这个时间复杂度在通过和不通过的边缘。

解法二:滑动窗口

假定j的j1是x,则当j增加时,x不变或增加。 当j++,vMaxSum[i-1][j’]不变,vPreSum[j+1] - vPreSum[j’] 增加。下面用因果表来证明。令L(j,x)= vMaxSum[i-1][x] R(j,x) = vPreSum[j+1] - vPreSum[x] |。

如果L(j,x)<= R(j,x)。x减少后,左式减少或不变,右式增加或不变。i++后,右式变大或不变。所以x减少只会让右式变大或不变。而右式显然大于左式,所以减少左式不会减少最大值。

规章编号 证明
假设一 合适的j1就是x
假设二 L(j,x)> R(j,x)
推论一 假设一 假设二 x–后,L变小,R变大。如果L(j,x-1) >= R(j,x-1),结合假设二,x-1比x更合适。与假设一矛盾。 L(j,x-1) < R(j,x-1)]
推论二 对于j+1,取x最大和为L(j,x)或R(j+1,x);取x-1,最大和为R(j+1,x-1)

代码

class Solution {
public:
int splitArray(vector& nums, int k) {
m_c = nums.size();
vector vPreSum(1);
for (const auto& n : nums)
{
vPreSum.emplace_back(n + vPreSum.back());
}
vector pre(m_c);
for (int i = 0; i < m_c; i++)
{
pre[i] = vPreSum[i + 1] - vPreSum[0];
}
for(int i = 1 ; i < k ; i++ )
{
vector dp(m_c,-1);
int k = i ;
for (int j = i; j < m_c; j++)
{
k–;
int iMax = INT_MAX;
#define MaxCro (max(pre[k], vPreSum[j + 1] - vPreSum[k+1]))
while ((k < j) && (MaxCro <= iMax))
{
iMax = MaxCro;
k++;
}
dp[j] = iMax;
}
pre.swap(dp);
}
return pre.back();
}
int m_c;
};

测试用例

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
assert(v1[i] == v2[i]);
}
}
template
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}
int main()
{
vector nums = { 1,2,3,4,5,6 };
int k = 2;
auto res = Solution().splitArray(nums, k);
Assert(res, 11);
nums = { 1, 0, 3, 3, 0, 6 };
 k = 2;
 res = Solution().splitArray(nums, k);
Assert(res, 7);
nums = { 6,5,3,2,2,1 };
k = 5;
res = Solution().splitArray(nums, k);
Assert(res, 6);
nums = { 1,0,3,3,0,1 };
k = 5;
res = Solution().splitArray(nums, k);
Assert(res, 3);
//CConsole::Out(res);

}

2023年一月版:二分

class Solution {
public:
int splitArray(vector& nums, int k) {
int iMax = *std::max_element(nums.begin(), nums.end());
int iSum = std::accumulate(nums.begin(), nums.end(),0);
int left = iMax-1, right = iSum;
   while (left+1 < right)
   {
     int iMid = (left + right) / 2;
     if (NeedK(nums, iMid) <= k)
     {
       right = iMid;
     }
     else
     {
       left = iMid;
     }
   }
   return right;
 }
 int NeedK(const vector<int>& nums, int iMaxSum)
 {
   int iNeedK = 1;
   int iSum = 0;
   for (const auto& n : nums)
   {
     if (iSum + n > iMaxSum)
     {
       iSum = n;
       iNeedK++;
     }
     else
     {
       iSum+=n;
     }
   }
   return iNeedK;
 }

};

2023年8月版也是二分

class Solution {
public:
int splitArray(vector& nums, int k) {
int iSum = std::accumulate(nums.begin(), nums.end(), 0);
int left = -1, r = iSum;
while (r > left + 1)
{
const auto mid = left + (r - left) / 2;
if (Is(nums, mid, k))
{
r = mid;
}
else
{
left = mid;
}
}
return r;
}
bool Is(const vector& nums, const int iMaxSum, int k)
{
k–;//可以分配的新组
int iHas = 0;
for (const auto& n : nums)
{
iHas += n;
if (iHas > iMaxSum)
{
k–;
iHas = n;
if (n > iMaxSum)
{
return false;
}
}
}
return k >= 0;
}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《闻缺陷则喜算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

鄙人想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
墨家名称的来源:有所得以墨记之。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境: VS2022 C++17


相关文章
|
5月前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
187 1
|
9月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
238 17
|
7月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
206 0
|
8月前
|
机器学习/深度学习 存储 算法
基于 C++ 布隆过滤器算法的局域网上网行为控制:URL 访问过滤的高效实现研究
本文探讨了一种基于布隆过滤器的局域网上网行为控制方法,旨在解决传统黑白名单机制在处理海量URL数据时存储与查询效率低的问题。通过C++实现URL访问过滤功能,实验表明该方法可将内存占用降至传统方案的八分之一,查询速度提升约40%,假阳性率可控。研究为优化企业网络管理提供了新思路,并提出结合机器学习、改进哈希函数及分布式协同等未来优化方向。
255 0
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
10月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
413 12
|
8月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
220 0
|
8月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
349 0
|
11月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
211 16
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)