【Java系列】深入解析Java多线程(下)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 【Java系列】深入解析Java多线程

Future实现多线程

Future是Java中的一个接口用于异步获取任务执行结果

在多线程编程中,可以使用Future来获取异步任务的执行结果,以便在任务完成后进行处理或展示。

使用Future实现多线程,需要以下步骤:

  1. 创建一个实现了Callable接口的类,实现call()方法,并在方法中编写线程执行的代码。
  2. 创建一个ExecutorService对象,可以使用Executors类提供的静态方法创建线程池,如newFixedThreadPool()、newCachedThreadPool()、newSingleThreadExecutor()等。
  3. 将Callable对象提交给ExecutorService对象执行,可以使用submit()方法提交,submit()方法会返回一个Future对象。
  4. 调用Future对象的get()方法获取Callable线程执行的结果。如果任务还没有执行完成,get()方法会阻塞当前线程直到任务执行完成并返回结果。

代码示例:

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.*;
public class FutureDemo {
    public static void main(String[] args) throws Exception {
        // 创建一个线程池
        ExecutorService executor = Executors.newFixedThreadPool(10);
        // 提交10个Callable任务给线程池执行
        List<Future<Integer>> results = new ArrayList<>();
        for (int i = 0; i < 10; i++) {
            Callable<Integer> task = new MyTask(i);
            Future<Integer> result = executor.submit(task);
            results.add(result);
        }
        // 输出Callable任务的执行结果
        for (int i = 0; i < 10; i++) {
            Integer result = results.get(i).get();
            System.out.println("Task " + i + " result is " + result);
        }
        // 关闭线程池
        executor.shutdown();
    }
}
class MyTask implements Callable<Integer> {
    private int id;
    public MyTask(int id) {
        this.id = id;
    }
    public Integer call() throws Exception {
        System.out.println("Task " + id + " is running");
        Thread.sleep(1000);  // 模拟任务执行时间
        return id * 10;
    }
}

示例讲解

在以上示例中:

1.首先创建了一个线程池,然后提交10个Callable任务给线程池执行。每个Callable任务都是MyTask类的实例,MyTask类实现了Callable接口,并重写了call()方法,在方法中模拟了一个需要执行1秒钟的任务,并返回一个结果。

2.在main函数中,使用List记录每个Callable任务的执行结果的Future对象,并在任务完成后通过调用get()方法获取Callable任务的执行结果。如果任务还没有执行完成,get()方法会阻塞当前线程直到任务执行完成并返回结果。

3.最后关闭线程池。


线程池实现多线程

线程池是Java中提供的一个用于管理和复用多个线程的框架,可以有效地提高多线程应用程序的性能和可靠性。

使用线程池实现多线程,通常需要以下步骤:

  1. 创建一个线程池,可以使用Executors类提供的静态方法创建线程池,如newFixedThreadPool()、newCachedThreadPool()、newSingleThreadExecutor()等。
  2. 创建一个实现了Runnable接口或Callable接口的类,实现run()方法或call()方法,并在方法中编写线程执行的代码。
  3. Runnable对象或Callable对象提交给线程池执行,可以使用submit()方法提交,submit()方法会返回一个Future对象。
  4. 关闭线程池,可以调用shutdown()方法或shutdownNow()方法。

代码示例:

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.*;
public class ThreadPoolDemo {
    public static void main(String[] args) throws Exception {
        // 创建一个包含10个线程的线程池
        ExecutorService executor = Executors.newFixedThreadPool(10);
        // 提交10个任务给线程池执行,并记录每个任务的执行结果
        List<Future<Integer>> results = new ArrayList<>();
        for (int i = 0; i < 10; i++) {
            Callable<Integer> task = new MyTask(i);
            Future<Integer> result = executor.submit(task);
            results.add(result);
        }
        // 等待所有任务执行完成
        executor.shutdown();
        executor.awaitTermination(Long.MAX_VALUE, TimeUnit.SECONDS);
        // 输出所有任务的执行结果
        int total = 0;
        for (int i = 0; i < 10; i++) {
            try {
                Integer result = results.get(i).get();
                System.out.println("Task " + i + " result is " + result);
                total += result;
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (ExecutionException e) {
                System.out.println("Task " + i + " execution error: " + e.getCause().getMessage());
            }
        }
        System.out.println("Total result is " + total);
    }
}
class MyTask implements Callable<Integer> {
    private int id;
    public MyTask(int id) {
        this.id = id;
    }
    public Integer call() throws Exception {
        System.out.println("Task " + id + " is running");
        Thread.sleep(2000);  // 模拟任务执行时间
        if (id % 2 == 0) {
            throw new RuntimeException("Task " + id + " execution error");
        }
        return id * 10;
    }
}

示例讲解:

在以上示例中,首先创建了一个包含10个线程的线程池,然后提交10个任务给线程池执行。每个任务都是MyTask类的实例,MyTask类实现了Callable接口,并重写了call()方法,在方法中模拟了一个需要执行2秒钟的任务,并返回一个结果。

其中,如果任务的id是偶数,会抛出一个运行时异常。

在main函数中,使用List记录每个任务的执行结果的Future对象,并在任务完成后通过调用get()方法获取任务的执行结果。

如果任务还没有执行完成,get()方法会阻塞当前线程直到任务执行完成并返回结果。

在所有任务提交给线程池后,调用ExecutorService的shutdown()方法关闭线程池,并调用awaitTermination()方法等待所有任务执行完成。

最后输出所有任务的执行结果,并计算所有任务的执行结果的总和。


总结

在多线程编程中,线程安全是一个重要的问题。后面文章会详细讲解:

1.Java中的同步机制,如synchronized关键字、Lock接口等,

2.线程之间的通信机制,如wait()、notify()、notifyAll()等。

3.程序如何避免死锁、竞态条件等问题,以确保程序的正确性和稳定性。

总之,Java多线程是提高程序并发性和响应能力的重要手段,需要掌握多线程的实现方式、同步机制、线程之间的通信机制等,以确保多线程程序的正确性和稳定性。


相关文章
|
4天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
16 2
|
8天前
|
Java
轻松上手Java字节码编辑:IDEA插件VisualClassBytes全方位解析
本插件VisualClassBytes可修改class字节码,包括class信息、字段信息、内部类,常量池和方法等。
57 6
|
6天前
|
安全 Java 开发者
深入解读JAVA多线程:wait()、notify()、notifyAll()的奥秘
在Java多线程编程中,`wait()`、`notify()`和`notifyAll()`方法是实现线程间通信和同步的关键机制。这些方法定义在`java.lang.Object`类中,每个Java对象都可以作为线程间通信的媒介。本文将详细解析这三个方法的使用方法和最佳实践,帮助开发者更高效地进行多线程编程。 示例代码展示了如何在同步方法中使用这些方法,确保线程安全和高效的通信。
25 9
|
6天前
|
存储 算法 Java
Java Set深度解析:为何它能成为“无重复”的代名词?
Java的集合框架中,Set接口以其“无重复”特性著称。本文解析了Set的实现原理,包括HashSet和TreeSet的不同数据结构和算法,以及如何通过示例代码实现最佳实践。选择合适的Set实现类和正确实现自定义对象的hashCode()和equals()方法是关键。
18 4
|
6天前
|
监控 安全 Java
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin
|
8天前
|
安全 Java
Java多线程集合类
本文介绍了Java中线程安全的问题及解决方案。通过示例代码展示了使用`CopyOnWriteArrayList`、`CopyOnWriteArraySet`和`ConcurrentHashMap`来解决多线程环境下集合操作的线程安全问题。这些类通过不同的机制确保了线程安全,提高了并发性能。
|
10天前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。
|
19天前
|
安全 Java
java 中 i++ 到底是否线程安全?
本文通过实例探讨了 `i++` 在多线程环境下的线程安全性问题。首先,使用 100 个线程分别执行 10000 次 `i++` 操作,发现最终结果小于预期的 1000000,证明 `i++` 是线程不安全的。接着,介绍了两种解决方法:使用 `synchronized` 关键字加锁和使用 `AtomicInteger` 类。其中,`AtomicInteger` 通过 `CAS` 操作实现了高效的线程安全。最后,通过分析字节码和源码,解释了 `i++` 为何线程不安全以及 `AtomicInteger` 如何保证线程安全。
java 中 i++ 到底是否线程安全?
|
9天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####
|
9天前
|
Java
JAVA多线程通信:为何wait()与notify()如此重要?
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是实现线程间通信的核心机制。它们通过基于锁的方式,使线程在条件不满足时进入休眠状态,并在条件满足时被唤醒,从而确保数据一致性和同步。相比其他通信方式,如忙等待,这些方法更高效灵活。 示例代码展示了如何在生产者-消费者模型中使用这些方法实现线程间的协调和同步。
24 3

推荐镜像

更多