【K8S系列】深入解析k8s网络

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 【K8S系列】深入解析k8s网络

1 基本介绍

1.1 K8s网络是什么

Kubernetes网络是指在Kubernetes集群中不同组件之间进行通信和交互的网络架构

在Kubernetes中,每个容器都有自己的IP地址,这些容器组成了Pod,Pod是Kubernetes调度的最小单元。

Kubernetes网络的设计目标是支持多种网络模型,并提供可插拔的网络插件,从而使Kubernetes能够在不同的云和物理环境中运行。

Kubernetes网络通常分为四个层次:

  • 容器网络接口(CNI)
  • Pod网络
  • Service网络
  • Ingress网络

容器网络接口(CNI)层

Kubernetes网络的底层是CNI层,它是一个独立的插件系统,用于为容器分配IP地址、创建网络接口和配置网络环境。

CNI插件可以在Kubernetes的各种云和物理环境中使用,例如AWS、GCP、Azure、OpenStack、Bare metal等。

这一层解决的是—Docker容器和Docker容器之间的网络


Pod是最小的可调度单元,通常包含一个或多个容器。Pod内的容器可以通过localhost(127.0.0.1)进行通信,这种通信方式不需要网络环境的支持,因此可以实现较低的延迟和较高的吞吐量


在Pod内部,容器之间可以通过共享网络命名空间进行通信。所有容器共享Pod的IP地址和网络命名空间,它们可以使用localhost或Pod的IP地址进行通信。可以通过在Pod的配置文件中指定容器之间的端口映射来定义容器之间的通信方式。


例如,在一个Pod中有两个容器A和B,A需要向B发送HTTP请求。可以在Pod的配置文件中为容器A和容器B分别指定端口号,然后在容器A中使用localhost和容器B的端口号进行通信。容器B在接收到请求后可以返回HTTP响应。


Pod网络层

Pod网络层是容器的网络层它为Pod提供了单独的IP地址和网络空间。Pod网络层可以使用多种网络模型,如host模式、overlay模式、macvlan模式等。

这一层解决的是—Pod与Pod之间的网络通讯


Pod间通信:

Pod是Kubernetes中最小的部署单元,每个Pod都有一个唯一的IP地址,Pod内的容器共享该IP地址和网络命名空间。

Pod间通信可以使用多种技术,如Kubernetes默认的CNI插件、Flannel、Calico、Weave Net等。


Service网络层

Service网络层是Kubernetes网络的中间层,它定义了Service之间的网络通信,为Service提供了一个虚拟IP地址,将请求路由到后端Pod的实际IP地址。

Service网络层可以使用ClusterIP、NodePort、LoadBalancer等多种类型。

这一层解决的是—Pod与Service之间的网络


Ingress网络层

Ingress网络层是Kubernetes网络的顶层,它允许外部流量进入Kubernetes集群,并将请求路由到不同的Service。

Ingress网络层可以使用多种Ingress控制器,如Nginx、Traefik、HAProxy等。

这一层解决的是—Internet与Service之间的网络


2 k8s网络模型

Kubernetes网络模型是一个为容器提供网络连接的框架,它允许容器在Kubernetes集群内和外部进行通信。

Kubernetes网络模型包括以下几个方面:

  1. Pod间通信Pod是Kubernetes中最小的部署单元,每个Pod都有一个唯一的IP地址,Pod内的容器共享该IP地址和网络命名空间。Pod间通信可以使用多种技术,如Kubernetes默认的CNI插件、Flannel、Calico、Weave Net等
  2. Pod与Service通信:Service是Kubernetes中用于访问Pod的一种抽象机制,它为一组Pod提供一个统一的访问入口,并分发请求到后端的Pod。Pod与Service之间的通信可以直接使用Service的IP地址或DNS名称,Kubernetes会自动将请求路由到后端的Pod。
  3. Pod与Node通信:Kubernetes中的Pod可以与它所在的节点进行通信,这种通信方式通常用于容器化应用需要访问宿主机上的资源,如宿主机上的文件、设备等。Pod与Node之间的通信可以通过节点IP地址或本地环回地址(127.0.0.1)进行。
  4. Service与外部网络通信:Kubernetes中的Service可以暴露给外部网络访问,这可以通过Ingress、NodePort或LoadBalancer等机制实现Ingress是一种Kubernetes中的资源对象用于将外部HTTP/HTTPS流量路由到Service中,它可以提供负载均衡、SSL终止等功能。NodePort是一种Service类型,它将Service的端口映射到每个节点的固定端口上,从而允许外部网络通过节点IP地址和该端口访问Service。LoadBalancer是一种Service类型,它使用云提供商的负载均衡器将外部网络流量路由到Service中。


Kubernetes网络模型提供了一种灵活、可扩展、高可用、安全的网络解决方案,使得容器之间能够相互通信以及与外界进行通信,为容器化应用的部署和运行提供了强大的支持。


网络方案

Kubernetes网络模型是基于容器、Pod、Service和Ingress等抽象概念构建的,它提供了以下特性:

  1. 容器间通信容器可以直接通过Pod网络进行通信,无需进行端口映射或NAT
  2. Service发现:Service网络层为Service提供了一个虚拟IP地址,使得其他容器可以通过Service名称和端口号访问该服务。
  3. 负载均衡:Kubernetes支持多种负载均衡算法,如Round Robin、IP Hash、Least Connection等。
  4. 网络隔离:Kubernetes支持通过网络策略实现容器之间的网络隔离,从而保护容器的安全性。
  5. 外部流量管理:Ingress网络层提供了外部流量管理机制,允许外部请求进入Kubernetes集群,并将请求路由到不同的Service。


Kubernetes网络架构和网络模型提供了高度可扩展性、可插拔性和高可用性的网络解决方案,使得开发人员可以更加轻松地部署和管理容器化应用程序。

k8s网络插件

Kubernetes 是一个强大的容器编排平台,它提供了多种网络插件,用于在集群中实现容器之间和容器与外部网络的通信。以下是几种常用的 Kubernetes 网络插件:

  1. Kube-router
  2. Flannel
  3. Calico
  4. Weave Net
  5. Cilium

1 Kube-router

Kube-router 是一种基于 BGP 协议的容器网络方案它可以在集群中创建一个虚拟网络,并使用 BGP 协议来管理容器之间的通信。

具体来说,Kube-router 会为每个容器分配一个唯一的 IP 地址,并使用 BGP 协议将这些 IP 地址添加到路由表中。

Kube-router 还支持多种网络拓扑结构,包括扁平网络、网格网络和点对点网络等。

使用示例

以下是使用 Kube-router 网络插件的示例代码,

演示前提:已经安装了 Kubernetes 集群和 Kube-router 网络插件:

创建一个 Kubernetes Deployment

apiVersion: apps/v1
kind: Deployment #资源类型为Deployment
metadata:
  name: nginx-deployment
spec:
  replicas: 2
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:latest
        ports:
        - containerPort: 80

创建一个 Kubernetes Service

apiVersion: v1
kind: Service #资源类型为service
metadata:
  name: nginx-service
spec:
  selector:
    app: nginx
  ports:
    - name: http
      port: 80
      targetPort: 80
  type: ClusterIP

创建一个 Kubernetes Pod,使用 Kube-router 网络插件

apiVersion: v1
kind: Pod  #资源类型为pod
metadata:
  name: kube-router-pod
spec:
  containers:
  - name: kube-router-container
    image: kube-router/kube-router:v1.3
    command:
    - kube-router
    - run
    args:
    - --run-router=false
    - --run-firewall=false
    - --run-service-proxy=false
    - --run-egress=false
    - --enable-cni=true
    - --cni-bin-dir=/opt/cni/bin
    - --cni-conf-dir=/etc/cni/net.d
    - --cni-network-config='{
        "cniVersion": "0.3.1",
        "name": "kube-router",
        "type": "kube-router"
      }'
    volumeMounts:
    - name: cni-bin
      mountPath: /opt/cni/bin
    - name: cni-conf
      mountPath: /etc/cni/net.d
  volumes:
  - name: cni-bin
    hostPath:
      path: /opt/cni/bin
  - name: cni-conf
    hostPath:
      path: /etc/cni/net.d

在该示例中,

创建了一个 Pod,并使用 Kube-router 网络插件来管理容器的网络配置。

具体来说,是在容器中启动了 Kube-router 进程,并通过命令行参数来配置插件的运行模式和网络配置。

还使用了 hostPath 卷来挂载 CNI 插件所需的文件和配置。


需要注意的是,在使用 Kube-router 网络插件时,需要根据不同的网络需求和环境来配置参数和选项。具体的配置方法可以参考 Kube-router 的官方文档和示例代码。

2 Flannel

Flannel 是一种基于 VXLAN 或者 UDP 的虚拟网络方案,它通过在每个节点上创建一个虚拟网络来实现容器之间的通信。

具体来说,Flannel 会为每个节点分配一个唯一的 IP 地址段,并将每个容器的 IP 地址映射到这个 IP 地址段中。

Flannel 需要依赖 etcd 或者其他分布式键值存储系统来存储网络配置信息

使用示例

以下是使用 Flannel 网络插件的示例代码,

演示前提:已经安装了 Kubernetes 集群和 Flannel 网络插件:

创建一个 Kubernetes Deployment

apiVersion: apps/v1
kind: Deployment #资源类型
metadata:
  name: nginx-deployment
spec:
  replicas: 2
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:latest
        ports:
        - containerPort: 80

创建一个 Kubernetes Service

apiVersion: v1
kind: Service #资源类型
metadata:
  name: nginx-service
spec:
  selector:
    app: nginx
  ports:
    - name: http
      port: 80
      targetPort: 80
  type: ClusterIP

创建一个 Kubernetes Pod,使用 Flannel 网络插件

apiVersion: v1
kind: Pod #资源类型
metadata:
  name: flannel-pod
spec:
  containers:
  - name: flannel-container
    image: quay.io/coreos/flannel:v0.14.0
    command:
    - /opt/bin/flanneld
    args:
    - --ip-masq
    - --kube-subnet-mgr
    - --iface=eth0
    securityContext:
      privileged: true
    volumeMounts:
    - name: flannel-cfg
      mountPath: /etc/kube-flannel/
  volumes:
  - name: flannel-cfg
    configMap:
      name: kube-flannel-cfg #挂载

在该示例中,创建了一个 Pod,并使用 Flannel 网络插件来管理容器的网络配置。另外,在容器中启动了 Flannel 进程,并通过命令行参数来配置插件的运行模式和网络配置。

还使用了 configMap 卷来挂载 Flannel 的配置文件。

需要注意的是,在使用 Flannel 网络插件时,需要根据不同的网络需求和环境来配置参数和选项

具体的配置方法可以参考 Flannel 的官方文档和示例代码。


3 Calico

Calico 是一种基于 BGP 协议的容器网络方案,它使用 IP 路由表来管理容器之间的通信。具体来说,Calico 会为每个容器分配一个唯一的 IP 地址,并使用 BGP 协议将这些 IP 地址添加到路由表中。Calico 还提供了强大的网络安全机制,可以保护容器网络的安全性。


4 Weave Net

Weave Net 是一种基于 VXLAN 或者 UDP 的虚拟网络方案,它可以在集群中创建一个虚拟网络,从而实现容器之间的通信。具体来说,Weave Net 会为每个容器分配一个唯一的 IP 地址,并使用 VXLAN 或者 UDP 来在不同节点之间传输数据。Weave Net 还支持多种网络拓扑结构,包括扁平网络、网格网络和点对点网络等。


5 Cilium

Cilium 是一种基于 eBPF 技术的容器网络方案,它可以在内核层面拦截和管理容器之间的通信。具体来说,Cilium 会在每个节点上创建一个 eBPF 过滤器,用于监控和管理容器之间的数据流。Cilium 还支持多种网络层协议和应用层协议,并提供了强大的网络安全机制,可以保护容器网络的安全性。

总结

Kubernetes 提供了多种网络插件,可以根据不同的网络需求和环境来选择适合的网络方案。需要注意的是,在进行网络插件的选择和部署时,需要考虑网络的可靠性、性能和安全性等因素。

今天就到这里了,后面详细介绍:

K8s网络问题解决方案

  • 网络故障排除
  • 网络性能优化
  • 网络安全
  • 实战案例

投票

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
9天前
|
人工智能 弹性计算 运维
ACK Edge与IDC:高效容器网络通信新突破
本文介绍如何基于ACK Edge以及高效的容器网络插件管理IDC进行容器化。
|
15天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
104 30
|
20天前
|
SQL 安全 算法
网络安全之盾:漏洞防御与加密技术解析
在数字时代的浪潮中,网络安全和信息安全成为维护个人隐私和企业资产的重要防线。本文将深入探讨网络安全的薄弱环节—漏洞,并分析如何通过加密技术来加固这道防线。文章还将分享提升安全意识的重要性,以预防潜在的网络威胁,确保数据的安全与隐私。
37 2
|
22天前
|
安全 算法 网络安全
网络安全的盾牌与剑:漏洞防御与加密技术深度解析
在数字信息的海洋中,网络安全是航行者不可或缺的指南针。本文将深入探讨网络安全的两大支柱——漏洞防御和加密技术,揭示它们如何共同构筑起信息时代的安全屏障。从最新的网络攻击手段到防御策略,再到加密技术的奥秘,我们将一起揭开网络安全的神秘面纱,理解其背后的科学原理,并掌握保护个人和企业数据的关键技能。
27 3
|
24天前
|
网络协议
网络通信的基石:TCP/IP协议栈的层次结构解析
在现代网络通信中,TCP/IP协议栈是构建互联网的基础。它定义了数据如何在网络中传输,以及如何确保数据的完整性和可靠性。本文将深入探讨TCP/IP协议栈的层次结构,揭示每一层的功能和重要性。
53 5
|
26天前
|
网络协议 安全 文件存储
动态DNS(DDNS)技术在当前网络环境中日益重要,它允许使用动态IP地址的设备通过固定域名访问
动态DNS(DDNS)技术在当前网络环境中日益重要,它允许使用动态IP地址的设备通过固定域名访问,即使IP地址变化,也能通过DDNS服务保持连接。适用于家庭网络远程访问设备及企业临时或移动设备管理,提供便捷性和灵活性。示例代码展示了如何使用Python实现基本的DDNS更新。尽管存在服务可靠性和安全性挑战,DDNS仍极大提升了网络资源的利用效率。
47 6
|
24天前
|
监控 网络协议 网络性能优化
网络通信的核心选择:TCP与UDP协议深度解析
在网络通信领域,TCP(传输控制协议)和UDP(用户数据报协议)是两种基础且截然不同的传输层协议。它们各自的特点和适用场景对于网络工程师和开发者来说至关重要。本文将深入探讨TCP和UDP的核心区别,并分析它们在实际应用中的选择依据。
52 3
|
28天前
|
SQL 监控 安全
网络安全的盾牌与利剑:漏洞防御与加密技术解析
在数字时代的洪流中,网络安全如同一场没有硝烟的战争。本文将深入探讨网络安全的核心议题,从网络漏洞的发现到防御策略的实施,以及加密技术的运用,揭示保护信息安全的关键所在。通过实际案例分析,我们将一窥网络攻击的手段和防御的艺术,同时提升个人与企业的安全意识,共同构筑一道坚固的数字防线。
|
5天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
42 17
|
16天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。

推荐镜像

更多
下一篇
DataWorks