医疗健康大数据服务平台技术架构

本文涉及的产品
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

医疗健康大数据服务平台是一个包含多个业务系统、多个自身管理软件、是一系列软、硬件和人员、政策支持的综合系统体系,统一建设医疗健康云计算服务中心,集中存储居民医疗卫生信息和居民电子健康档案等数据,满足社会大众、医务工作者、各级卫生主管部门、第三方机构的应用需求。

医疗健康大数据服务平台是一个包含多个业务系统、多个自身管理软件、是一系列软、硬件和人员、政策支持的综合系统体系,统一建设医疗健康云计算服务中心,集中存储居民医疗卫生信息和居民电子健康档案等数据,满足社会大众、医务工作者、各级卫生主管部门、第三方机构的应用需求。 医疗健康大数据服务平台总体架构如下图所示。


image
图 医疗健康大数据服务平台总体架构

如上图所示,医疗健康大数据服务平台分为资源层、服务层和展现层。其中层功能如下:

1、展现层

负责对用户提供医疗健康信息、以及分析与挖掘信息服务,支持4大类用户,包括:社会公众、医务工作者、卫生主管部门和第三方机构。通过本平台,既可以获得医疗健康数据服务结果展示,也可以获得医疗健康数据分析与挖掘服务结果展示。本平台对外提供 Web页面接入方式或移动通讯终端(android、iOS)接入方式。

2、服务层

服务层主要是平台建设过程中能够提供的所有应用相关服务。应用服务大致可分为业务应用类服务、数据资源类服务、工具软件类服务和其他类服务。业务应用类服务主要面向不同的用户提供解决具体业务功能需要,主要包括公众服务、医院诊疗服务、综合卫生服务、大数据分析服务等;数据类服务按业务所划分的各类数据服务。工具软件类服务主要提供给数据的维护和采集、清洗、整合、分析、统计等。

3、资源层

资源层负责医疗健康大数据和数据分析与挖掘相关应用资源的一体化存储和管理。资源层又可分为三层:虚拟化业务管理平台、虚拟化数据管理平台和物理资源层。其中:

物理资源层提供各种数据资源、应用资源的实际存储,包括:医疗健康相关的所有数据,建设的数据资源中心和应用服务资源中的所有资源。本层将提供关系数据库系统、非关系数据库、数据仓库等多种类型的数据管理系统。

虚拟化数据管理平台采用虚拟化技术对所有物理资源进行封装,对上层提供各种虚拟化资源。对内部,虚拟化数据管理平台通过异构式数据集成与管理、虚拟化资源调度、数据划分、负载均衡、实时备份监控、故障恢复等多种手段保证整个平台的高性能、高可用性、高可扩展性。

虚拟化业务管理平台负责对所有的应用服务相关资源进行管理和调度。根据功能,它又可以划分为:虚拟化数据资源中心和虚拟化应用服务组件资源中心。其中:数据资源中心针对不同的需求,对不同业务部门不同结构数据进行分析、抽取、加工,形成面向主题的综合数据,为组织内各个层面的人员提供高效的、用于宏观决策的各种信息。应用服务资源中心应用服务组件资源中心通过提供数据挖掘等服务,使卫生行业管理者们能够利用各种历史数据和现在的数据进行各种复杂分析、预测和辅助决策。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2月前
|
大数据
【赵渝强老师】大数据主从架构的单点故障
大数据体系架构中,核心组件采用主从架构,存在单点故障问题。为提高系统可用性,需实现高可用(HA)架构,通常借助ZooKeeper来实现。ZooKeeper提供配置维护、分布式同步等功能,确保集群稳定运行。下图展示了基于ZooKeeper的HDFS HA架构。
|
3月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
203 1
|
7天前
|
SQL 人工智能 自然语言处理
DataWorks年度发布:智能化湖仓一体数据开发与治理平台的演进
阿里云在过去15年中持续为268集团提供数据服务,积累了丰富的实践经验,并连续三年在IDC中国数据治理市场份额中排名第一。新一代智能数据开发平台DateWorks推出了全新的DateStudio IDE,支持湖仓一体化开发,新增Flink计算引擎和全面适配locs,优化工作流程系统和数据目录管理。同时,阿里云正式推出个人开发环境模式和个人Notebook,提升开发者体验和效率。此外,DateWorks Copilot通过自然语言生成SQL、代码补全等功能,显著提升了数据开发与分析的效率,已累计帮助开发者生成超过3200万行代码。
|
18天前
|
存储 SQL 分布式计算
大数据时代的引擎:大数据架构随记
大数据架构通常分为四层:数据采集层、数据存储层、数据计算层和数据应用层。数据采集层负责从各种源采集、清洗和转换数据,常用技术包括Flume、Sqoop和Logstash+Filebeat。数据存储层管理数据的持久性和组织,常用技术有Hadoop HDFS、HBase和Elasticsearch。数据计算层处理大规模数据集,支持离线和在线计算,如Spark SQL、Flink等。数据应用层将结果可视化或提供给第三方应用,常用工具为Tableau、Zeppelin和Superset。
192 8
|
2月前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
250 3
【赵渝强老师】基于大数据组件的平台架构
|
18天前
|
存储 负载均衡 监控
揭秘 Elasticsearch 集群架构,解锁大数据处理神器
Elasticsearch 是一个强大的分布式搜索和分析引擎,广泛应用于大数据处理、实时搜索和分析。本文深入探讨了 Elasticsearch 集群的架构和特性,包括高可用性和负载均衡,以及主节点、数据节点、协调节点和 Ingest 节点的角色和功能。
40 0
|
3月前
|
机器学习/深度学习 监控 搜索推荐
电商平台如何精准抓住你的心?揭秘大数据背后的神秘推荐系统!
【10月更文挑战第12天】在信息爆炸时代,数据驱动决策成为企业优化决策的关键方法。本文以某大型电商平台的商品推荐系统为例,介绍其通过收集用户行为数据,经过预处理、特征工程、模型选择与训练、评估优化及部署监控等步骤,实现个性化商品推荐,提升用户体验和销售额的过程。
117 1
|
3月前
|
存储 SQL 分布式计算
湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
【10月更文挑战第7天】湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
191 1
|
3月前
|
存储 SQL 缓存
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
从 3.0 系列版本开始,Apache Doris 开始支持存算分离模式,用户可以在集群部署时选择采用存算一体模式或存算分离模式。基于云原生存算分离的架构,用户可以通过多计算集群实现查询负载间的物理隔离以及读写负载隔离,并借助对象存储或 HDFS 等低成本的共享存储系统来大幅降低存储成本。
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
|
1月前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。