【送书活动】大模型赛道如何实现华丽的弯道超车

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 【送书活动】大模型赛道如何实现华丽的弯道超车

导读

导读:Alluxio作为一款强大的分布式统一大数据虚拟文件系统,已经在众多领域展现出了其卓越的应用价值,并且为AI/ML训练赋能提供了一个全新的解决方案。



在人工智能(AI)和机器学习(ML)领域,数据驱动的决策和模型训练已成为现代应用和研究的核心。伴随大模型技术迅猛发展,模型训练所需数据的规模不断扩大,数据的处理、存储和传输都面临着巨大的挑战,传统的存储和处理方式已经无法满足实时性和性能需求。同时,不同计算框架之间的数据孤岛问题也制约了数据的有效利用。如何在激烈竞争的大模型赛道脱颖而出,实现华丽的弯道超车,成为了众多参赛选手投入巨大人力、物力不断探索的方向。


模型训练

而这其中,模型训练成为重中之重。当我们进行模型训练时,需要高效的数据平台架构快速生成分析结果,而模型训练在很大程度上依赖于大型数据集。执行所有模型训练的第一步都是将训练数据从存储输送到计算引擎的集群,而数据工作流的效率会大大影响模型训练的效率。在现实场景中,AI/ML 模型训练任务对数据平台常常有以下几个需求:


01 具备对海量小文件的频繁数据访问的 I/O 效率

AI/ML 工作流不仅包含模型训练和推理,还包括前期的数据加载和预处理步骤,尤其是前期数据处理对整个工作流都有很大影响。与传统的数据分析应用相比,AI/ML 工作负载在数据加载和预处理阶段往往对海量小文件有较频繁的 I/O 请求。因此,数据平台需要提供更高的 I/O 效率,从而更好地为工作流提速。


02 提高 GPU 利用率,降低成本并提高投资回报率

机器学习模型训练是计算密集型的,需要消耗大量的 GPU 资源,从而快速准确地处理数据。由于 GPU 价格昂贵,因此优化 GPU 的利用率十分重要。这种情况下,I/O 就成为了瓶颈——工作负载受制于 GPU 的数据供给速度,而不是GPU 执行训练计算的速度。数据平台需要达到高吞吐量和低延迟,让 GPU 集群完全饱和,从而降低成本。


03 支持各种存储系统的原生接口

随着数据量的不断增长,企业很难只使用单一存储系统。不同业务部门会使用各类存储,包括本地分布式存储系统(HDFS和Ceph)和云存储(AWS S3,Azure Blob Store,Google 云存储等)。为了实现高效的模型训练,必须能够访问存储于不同环境中的所有训练数据,用户数据访问的接口最好是原生的。


04 支持单云、混合云和多云部署

除了支持不同的存储系统外,数据平台还需要支持不同的部署模式。随着数据量的增长,云存储成为普遍选择,它可扩展性高,成本低且易于使用。企业希望不受限制地实现单云、混合云和多云部署,实现灵活和开放的模型训练。另外,计算与存储分离的趋势也越来越明显,这会造成远程访问存储系统,这种情况下数据需要通过网络传输,带来性能上的挑战。数据平台需要满足在跨异构环境访问数据时也能达到高性能的要求。


综上,AI/ML 工作负载要求能在各种类型的异构环境中以低成本快速访问大量数据。企业需要不断优化升级数据平台,确保模型训练的工作负载在能够有效地访问数据,保持高吞吐量和高 GPU 利用率 。

微信截图_20231016211035.png

Alluxio

Alluxio作为一款强大的分布式统一大数据虚拟文件系统,已经在众多领域展现出了其卓越的应用价值,并且为AI/ML训练赋能提供了一个全新的解决方案,其核心密码有四个方面组成:


01 通过数据抽象化统一数据孤岛

Alluxio作为数据抽象层,可以做到数据无缝访问而不拷贝和移动数据,无论是在本地还是在云上的数据都留在原地。通过Alluxio,数据被抽象化从而呈现统一的视图,大大降低数据收集阶段的复杂性。


由于Alluxio已经实现与存储系统的集成,机器学习框架只需与Alluxio交互即可从其连接的任何存储中访问数据。因此,我们可以利用来自任何数据源的数据进行训练,提高模型训练质量。在无需将数据手动移动到某一集中的数据源的情况下,包括Spark、Presto、PyTorch和TensorFlow在内所有的计算框架都可以访问数据,不必担心数据的存放位置。


02 通过分布式缓存实现数据本地性

Alluxio的分布式缓存,让数据均匀地分布在集群中,而不是将整个数据集复制到每台机器上,如图1所示。当训练数据集的大小远大于单个节点的存储容量时,分布式缓存尤其有用,而当数据位于远端存储时,分布式缓存会把数据缓存在本地,有利于数据访问。此外,由于在访问数据时不产生网络I/O,机器学习训练速度更快、更高效。

微信截图_20231016211046.png如上图所示,对象存储中存有全部训练数据,两个文件(/path1/file1和/path2/file2)代表数据集。我们不在每台训练节点上存储所有文件块,而是将文件块分布式地存储在多台机器上。为了防止数据丢失和提高读取并发性,每个块可以同时存储在多个服务器上。


03 优化整个工作流的数据共享

在模型训练工作中,无论是在单个作业还是不同作业之间,数据读取和写入都有很大程度的重叠。Alluxio可以让计算框架访问之前已经缓存的数据,供下一步的工作负载进行读取和写入,如图2所示。比如在数据准备阶段使用Spark进行ETL数据处理,那么数据共享可以确保输出数据被缓存,供后续阶段使用。通过数据共享,整个数据工作流都可以获得更好的端到端性能。

微信截图_20231016211123.png

04 通过并行执行数据预加载、缓存和训练来编排数据工作流

Alluxio通过实现预加载和按需缓存来缩短模型训练的时间。如图3所示,通过数据缓存从数据源加载数据可以与实际训练任务并行执行。因此,训练在访问数据时将得益于高数据吞吐量,不必等待数据全部缓存完毕才开始训练。

微信截图_20231016211134.png

虽然一开始会出现I/O延迟,但随着越来越多的数据被加载到缓存中,I/O等待时间会减少。在本方案中,所有环节,包括训练数据集从对象存储加载到训练集群、数据缓存、按需加载用于训练的数据以及训练作业本身,都可以并行地、相互交错地执行,从而极大地加速了整个训练进程。

微信截图_20231016211220.png

了解更多Alluxio与AI/ML模型训练传统方案的对比分析,具体性能测试情况,以及来自广泛行业的应用案例,欢迎阅读《分布式统一大数据虚拟文件系统——Alluxio原理、技术与实践》。



直播时间

9 月 21日(星期四)


20:00 - 21:30


本次直播主要介绍Alluxio的技术原理、核心功能、使用方法,以及Alluxio在大数据分析、AI/ML等场景的实战案例。

微信截图_20231016211235.png

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
打赏
0
0
0
0
180
分享
相关文章
温暖接力:“追星星的AI”再出发,志愿者招募令!
孤独症儿童绘本创作工具二期迭代开发,缺人!
117 21
温暖接力:“追星星的AI”再出发,志愿者招募令!
震撼揭秘!JS模块化进化史:从混沌到秩序,一场代码世界的华丽蜕变,你怎能错过这场编程盛宴?
【8月更文挑战第23天】在 Web 前端开发领域,JavaScript 模块化已成为处理日益复杂的 Web 应用程序的关键技术。通过将代码分解成独立且可重用的模块,开发者能够更有效地组织和管理代码,避免命名冲突和依赖混乱。从最早的全局函数模式到 IIFE,再到 CommonJS 和 AMD,最终进化到了 ES6 的原生模块支持以及 UMD 的跨环境兼容性。本文通过具体示例介绍了这些模块化规范的发展历程及其在实际开发中的应用。
95 0
"挑战极限!Oracle数据库精英试炼场:夺命连环5问,你能否一路披荆斩棘,登顶技术巅峰?"
【8月更文挑战第9天】Oracle,数据库领域的巨擘,以卓越的数据处理能力、稳定性和安全性成为企业级应用首选。今天我们带来“Oracle夺命连环25问”。首问:核心组件有哪些?答:实例(含内存结构和后台进程)、物理存储(数据文件、控制文件等)及逻辑存储(表空间、段等)。第二问:如何理解事务隔离级别?答:Oracle支持四种级别,默认READ COMMITTED,避免脏读,但可能遇到不可重复读和幻读。
76 0
案例酷 | 干了这碗鸡汤!老乡鸡规模扩张的数智化底气
编者按: 2003年,老乡鸡在合肥开了第一家店,18年过去了,如今老乡鸡在全国一共超过1000家门店,拥有国内中式连锁快餐最大的门店规模。
321 0
每日一题冲刺大厂第十六天 NOIP普及组 三国游戏
大家好,我是泡泡,给大家带来每日一题的目的是为了更好的练习算法,我们的每日一题为了让大家练到各种各样的题目,熟悉各种题型,一年以后,蜕变成为一个不一样的自己!
145 0
每日一题冲刺大厂第十六天 NOIP普及组 三国游戏
在线教学战“疫”打响,VIPKID背后是阿里云
庚子年至,疫情肆虐。全国范围内线下教学工作全线停摆,学生由线下涌至线上,线上流量激增,在线授课模式进一步渗透下沉市场。阿里云助力 VIPKID 云端课堂解决全球网络互通和优化,实现流畅教学,共同探索人工智能在线教育的未来。知识不会被疫情隔离,在线教育让因材施教成为可能。
在线教学战“疫”打响,VIPKID背后是阿里云
《长安十二时辰》背后的文娱大脑:如何提升爆款的确定性?
本文整理自LiveVideoStack线上分享第三季,第九期,由阿里巴巴资深算法专家,蔡龙军(牧己)为大家详细介绍如何在制作和播出阶段,利用AI和大数据来提升重要环节的确定性,进而提升内容爆款的可能性。
706 0
《长安十二时辰》背后的文娱大脑:如何提升爆款的确定性?
“好奇号”在火星开启夏日狂奔!4千志愿者助力其实现火星自动驾驶,你也可以参与!
“好奇号”在火星开启夏日狂奔!4千志愿者助力其实现火星自动驾驶,你也可以参与!
194 0
AI课程将在今秋走入高中,准高一新生准备好了吗?
就教学体系而言,学习AI不再是本科生和研究生的专属。
334 0