【动态规划】子数组系列

简介: 【动态规划】子数组系列

动态规划(子数组系列)

1. 最大子数组和

题目链接

  1. 状态表示
    dp[i]表示到 i 位置时所有子数组的最大和
    如下展示的这样:

  2. 状态转移方程

  3. 初始化
    为了方便初始化,采用虚拟节点的方式,这里初始化dp[0] = 0
  1. 填表
    从左到右
  2. 返回值
    由于每个dp表里的每个值都表示到这个位置的最大子数组的和,所有需要返回最大值

AC代码:

class Solution 
{
public:
    int maxSubArray(vector<int>& nums) 
    {
        int n = nums.size();
        vector<int> dp(n + 1);
        int ret = -0x3f3f3f3f;
        for (int i = 1; i <= n; i++)
        {
            dp[i] = max(nums[i - 1], dp[i - 1] + nums[i - 1]);
            ret = max(ret, dp[i]);
        }
        return ret;
    }
};

2. 环形子数组的最大和

题目链接

分析题目:这道题目可以取环形数组,是不是可以像之间做的环形的打家劫舍题目一样来解决?

还是分为两种情况来考虑:


如果最大和是蓝色区域的部分,只需要求出最大子数组的和就可以


如果是这样,由于数组整体的和是固定的,只需要求出中间的最小值然后相减即可

  1. 状态表示
    讲过前面的题目分析,发现这个题目需要两个状态表示:
    f[i]表示到 i 位置时所有子数组,子数组和最大的值
    g[i]表示到 i 位置时所有子数组,子数组和最小的值
  2. 状态转移方程

  3. 初始化
    采用虚拟节点的方式
  4. 填表
  5. 返回值
    返回两种情况的较大值

AC代码:

class Solution 
{
public:
    const int N = 0x3f3f3f3f;
    int maxSubarraySumCircular(vector<int>& nums) 
    {
        int n = nums.size();
        vector<int> f(n + 1), g(n + 1);
        int fMax = -N, gMin = N, sum = 0;
        for (int i = 1; i <= n; i++)
        {
            f[i] = max(nums[i - 1], f[i - 1] + nums[i - 1]);
            fMax = max(fMax, f[i]);
            g[i] = min(nums[i - 1], g[i - 1] + nums[i - 1]);
            gMin = min(gMin, g[i]);
            sum += nums[i - 1];
        }
        if (sum == gMin) return fMax;
        else return max(fMax, (sum - gMin));
    }
};

3. 乘积最大子数组

题目链接

  1. 状态表示
    f[i]表示以 i 为结尾所有子数组中最大乘积
    g[i]表示以 i 为结尾所有子数组中最小乘积
  2. 状态转移方程

  3. 初始化
    虚拟节点的方式,为了不影响后续的填表采用f[0] = 1, g[0] = 1
  1. 填表
    从左到右
  2. 返回值
    返回乘积最大的即可

AC代码:

class Solution 
{
public:
    int maxProduct(vector<int>& nums) 
    {
        int n = nums.size();
        vector<int> f(n + 1), g(n + 1);
        f[0] = g[0] = 1;
        int ret = -0x3f;
        for (int i = 1; i <= n; i++)
        {
            if (nums[i - 1] < 0)
            {
                f[i] = g[i - 1] * nums[i - 1];
                g[i] = f[i - 1] * nums[i - 1];
            }
            if (nums[i - 1] > 0)
            {
                f[i] = f[i - 1] * nums[i - 1];
                g[i] = g[i - 1] * nums[i - 1];
            }
            f[i] = max(nums[i - 1], f[i]);
            g[i] = min(nums[i - 1], g[i]);
            ret = max(ret, f[i]);
        }
        return ret;
    }
};

4. 乘积为正的最长子数组的长度

题目链接

  1. 状态表示
    f[i]表示:以 i 位置为结尾所有子数组中乘积为正数的最大长度
    g[i]表示:以 i 位置为结尾所有子数组中乘积为负数的最大长度
  2. 状态转移方程

  3. 初始化
    f[0] = 1, g[0] = 0
  4. 填表
  5. 返回值返回乘积为正的最大长度

AC代码:

class Solution 
{
public:
    int getMaxLen(vector<int>& nums) 
    {
        int n = nums.size();
        vector<int> f(n + 1), g(n + 1);
        int ret = -0x3f3f3f3f;
        for (int i = 1; i <= n; i++)
        {
            if (nums[i - 1] > 0)
            {
                f[i] = max(1, f[i - 1] + 1);
                g[i] = max(0, g[i - 1] == 0 ? 0 : g[i - 1] + 1);
            }
            if (nums[i - 1] < 0)
            {
                f[i] = max(0, g[i - 1] == 0 ? 0 : g[i - 1] + 1);
                g[i] = max(1, f[i - 1] + 1);
            }
            ret = max(ret, f[i]);
        }
        return ret;
    }
};

5. 等差数列划分

题目链接

  1. 状态表示
    dp[i]表示到 i 位置时,所有是等差数列子数组之和
  2. 状态转移方程

3. 初始化 为了防止后续的填表不越界dp[0] = 0, dp[1] = 0

4. 填表

从左到右

5. 返回值


dp表的所有元素之和

AC代码:

class Solution 
{
public:
    int numberOfArithmeticSlices(vector<int>& nums) 
    {
        int n = nums.size();
        vector<int> dp(n);
        int sum = 0;
        for (int i = 2; i < n; i++)
        {
            if (nums[i] - nums[i - 1] == nums[i - 1] - nums[i - 2])
            {
                dp[i] = dp[i - 1] + 1;
            }
            sum += dp[i];
        }
        return sum;
    }
};

6. 最长湍流子数组

题目链接

  1. 状态表示
    f[i] 以 i 位置为结尾的所有子数组当中,最后呈现“上升” 状态下最长湍流子数组的长度
    g[i] 以 i 位置为结尾的所有子数组当中,最后呈现“下降”状态下最长湍流子数组的长度
  2. 状态转移方程

  1. 初始化
    表里的数据都初始化为1
  2. 填表
    从左到右
  3. 返回值
    返回两个表的最大值

AC代码:

class Solution 
{
public:
    int maxTurbulenceSize(vector<int>& arr) 
    {
        int n = arr.size();
        vector<int> f(n, 1), g(n, 1);
        int ret = 1;
        for (int i =1; i < n; i++)
        {
            if (arr[i] > arr[i - 1]) f[i] = g[i - 1] + 1;
            else if (arr[i] < arr[i - 1]) g[i] = f[i - 1] + 1;
            ret = max(ret, max(f[i], g[i]));
        }
        return ret;
    }
};

7. 单词拆分

题目链接

  1. 状态表示
    dp[i] 表示0到i之间的字符串能否被字典拼接
  2. 状态转移方程

  3. 初始化
    可以在字符串s前面加上一个占位符这样就可以没有下标的映射关系
  1. 填表
    从左到右
  2. 返回值

AC代码:

class Solution 
{
public:
    bool wordBreak(string s, vector<string>& wordDict) 
    {
        unordered_set<string> hash;
        for (auto e : wordDict) hash.insert(e);
        int n = s.size();
        vector<bool> dp(n + 1);
        dp[0] = true;
        s = ' ' + s;
        for (int i = 1; i <= n; i++)
        {
            for (int j = i; j >= 1; j--)
            {
                if (dp[j - 1] && hash.count(s.substr(j, i - j + 1)))
                {
                    dp[i] = true;
                    break;
                }
            }
        }
        return dp[n];
    }
};

8. 环形字符串中的唯一的子字符串

题目链接

  1. 状态表示
    dp[i]表示到 i 位置的所有子串当中有多少个在base中出现过
  2. 状态转移方程

  3. 初始化
    初始化为1
  1. 填表
  2. 返回值
    由于dp表当中存的值可能是重复的,所以需要进行去重操作。相同字符串结尾的dp值,取最大的值即可

AC代码:

class Solution 
{
public:
    int findSubstringInWraproundString(string s) 
    {
        int n = s.size();
        vector<int> dp(n, 1);
        for (int i = 1; i < n; i++)
        {
            if ((s[i - 1] + 1 == s[i]) || (s[i - 1] == 'z' && s[i] == 'a'))
            {
                dp[i] = dp[i - 1] + 1;
            }
        }
        int hash[26] = {0};
        int sum = 0;
        for (int i = 0; i < n; i++)
        {
            hash[s[i] - 'a'] = max(hash[s[i] - 'a'], dp[i]);
        }
        for (auto x : hash) sum += x;
        return sum;
    }
};
相关文章
|
算法
【学会动态规划】最小路径和(9)
【学会动态规划】最小路径和(9)
47 0
|
测试技术
【动态规划刷题 10】最大子数组和 III && 环形子数组的最大和
【动态规划刷题 10】最大子数组和 III && 环形子数组的最大和
|
机器学习/深度学习 算法
【动态规划刷题 9】最大子数组和 III && 环形子数组的最大和
【动态规划刷题 9】最大子数组和 III && 环形子数组的最大和
|
2月前
|
存储
【动态规划】子数组系列
本文介绍了多个动态规划问题及其解决方案,包括最大子数组和、环形子数组的最大和、乘积最大子数组、乘积为正数的最长子数组长度、等差数列划分、最长湍流子数组、单词拆分及环绕字符串中唯一的子字符串。通过详细的状态定义、转移方程和代码实现,帮助读者理解每类问题的核心思路与解题技巧。
54 2
|
7月前
|
算法 测试技术 C#
[二分查找]LeetCode2040:两个有序数组的第 K 小乘积
[二分查找]LeetCode2040:两个有序数组的第 K 小乘积
|
7月前
|
算法 测试技术 C#
【二分查找】【双指针】LeetCode:2565最少得分子序列
【二分查找】【双指针】LeetCode:2565最少得分子序列
|
7月前
|
测试技术
leetcode-152:乘积最大子数组
leetcode-152:乘积最大子数组
64 0
|
算法 C语言 C++
【双指针问题】977. 有序数组的平方
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
57 0
下一篇
DataWorks