为什么存在内存对齐?
平台原因(移植原因):
- 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
性能原因:
- 数据结构(尤其是栈)应该尽可能地在自然边界上对齐。 原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。
总体来说:
- 结构体的内存对齐是拿空间来换取时间的做法
除此之外我们还可以修改默认对齐数
#pragma 这个预处理指令,这里我们使用这个指令,可以改变我们的默认对齐数。
例如:
#pragma pack(8)//设置默认对齐数为8 struct S1 { char c1; int i; char c2; }; #pragma pack()//取消设置的默认对齐数,还原为默认
结构在对齐方式不合适的时候,我们可以自己更改默认对齐数。
结构体传参
结构体传参有两种方式直接上代码:
struct S { int data[1000]; int num; }; struct S s = {{1,2,3,4}, 1000}; //结构体传参 void print1(struct S s) { printf("%d\n", s.num); } //结构体地址传参 void print2(struct S* ps) { printf("%d\n", ps->num); } int main() { print1(s); //传结构体 print2(&s); //传地址 return 0; }
这两种方式哪个更好呢?
答案是printf2。函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能
的下降。
结论: 结构体传参的时候,要传结构体的地址。
位段
什么是位段
位段的声明和结构是类似的,有两个不同:
- 位段的成员必须是 int、unsigned int 或signed int 。
- 位段的成员名后边有一个冒号和一个数字。
例如:
struct A { int a:2; int b:5; int c:10; int d:30; };
A就是一个位段类型。
那位段A的大小是多少?
printf("%d\n", sizeof(struct A));//8
A的大小是8个字节,这是怎么回事呢?变量:后边的数字表示该变量所需的比特位(二进制位)。
位段的内存分配
- 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型
- 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
- 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
例如:
a占2个二进制位,b占5个二进制位,c占10个二进制位,那么系统在分配空间时就会分配一个整形空间给它们。
而d是30个二进制位,1个整形还剩余15个二进制位不够,那么此时系统会再次开辟一个整形空间,至于d是继续沿用剩余的15位空间,还是直接在新开的空间里存储,这里就涉及了很多不确定因素,编译器不同位段开辟的空间及使用的方式也会各不相同,所有位段是不跨平台的。
这里及涉及到位段跨平台问题,主要因素:
- int 位段被当成有符号数还是无符号数是不确定的。
- 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会出问题。
- 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
- 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。
总结:跟结构相比,位段可以达到同样的效果,但是可以很好的节省空间,但是有跨平台的问题存在。
位段的应用:
可以尽可能的节省空间。
枚举
枚举就是把可能的取值一一列举。
在我们的日常生活中也有很多例子:如性别,月份,星期等。
枚举的定义
enum Color//颜色 { RED, GREEN, BLUE };
enum Color 就是是枚举类型。 {}中的内容是枚举类型的可能取值,也叫 枚举常量 。
这些可能取值都是有值的,默认从0开始,一次递增1,当然在定义的时候也可以赋初值。
enum Color//颜色 { RED=1, GREEN=2, BLUE=4 }; int main() { enum Color c=RED; return 0; }
枚举的优点
那枚举有什么用呢?我们可以使用 #define 定义常量,为什么非要使用枚举? 枚举的优点:
- 增加代码的可读性和可维护性
- 和#define定义的标识符比较枚举有类型检查,更加严谨。
- 便于调试
- 使用方便,一次可以定义多个常量
枚举的使用
enum Color//颜色 { RED=1, GREEN=2, BLUE=4 }; enum Color clr = GREEN;//只能拿枚举常量给枚举变量赋值,才不会出现类型的差异。
那这样是否可行呢?clr = 5,答案是不可行,枚举有类型检查,在c++编译时会出现报错,显示整形不能用于初始化枚举类型。
联合(共用体)
联合类型的定义
联合也是一种特殊的自定义类型 这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)
例如:
//联合类型的声明 union Un { char c; int i; }; //联合变量的定义 union Un un; //计算连个变量的大小 printf("%d\n", sizeof(un));//4
c和i公用同一块空间。
通过调试我们也可以观察到:
它们的地址相同。由此我们就可以推断出内存分布:
使用c时就访问蓝色空间,使用i时就访问整块空间。我们通过程序感受一下:
union Un { char c; int i; }; union Un un; int main() { un.i = 0x11223344; un.c = 0x55; printf("%x\n", un.i);//11223355 return 0; }
i正常情况下应该是11223344,而使用联合,将c赋值0x55,由于它们共用同一块空间,所以在c赋值时就自动覆盖了i的后两位(程序运行在小端机器上)。
联合大小的计算
规则如下:
- 联合的大小至少是最大成员的大小。
- 当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍
例如:
union Un1 { char c[5]; int i; }; union Un2 { short c[7]; int i; }; //下面输出的结果是什么? printf("%d\n", sizeof(union Un1));//8 printf("%d\n", sizeof(union Un2));//16
总结
希望本文能够帮助你更好地理解自定义类型,并且能够在你的编程之路上起到一定的帮助作用。最后,感谢阅读!