Redis实现分布式锁(1)

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: Redis实现分布式锁(1)

4、分布式锁


分布式锁是一种用于在分布式系统中实现同步和互斥访问的机制。在分布式系统中,多个节点同时访问共享资源可能会导致数据不一致或竞争条件的发生。分布式锁提供了一种保护共享资源的方式,以确保在任意时刻只有一个节点可以访问该资源。



4.1 、基本原理和实现方式对比

分布式锁:满足分布式系统或集群模式下 多进程可见 并且 互斥 的锁。


分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路

image.png

那么分布式锁他应该满足一些什么样的条件呢?


可见性:多个线程都能看到相同的结果,注意:这个地方说的可见性并不是并发编程中指的内存可见性,只是说多个进程之间都能感知到变化的意思


互斥:互斥是分布式锁的最基本的条件,使得程序串行执行


高可用:程序不易崩溃,时时刻刻都保证较高的可用性


高性能:由于加锁本身就让性能降低,所有对于分布式锁本身需要他就较高的加锁性能和释放锁性能


安全性:安全也是程序中必不可少的一环

微信截图_20231016173647.png

常见的分布式锁有三种


Mysql:mysql本身就带有锁机制,但是由于mysql性能本身一般,所以采用分布式锁的情况下,其实使用mysql作为分布式锁比较少见


Redis:redis作为分布式锁是非常常见的一种使用方式,现在企业级开发中基本都使用redis或者zookeeper作为分布式锁,利用setnx这个方法,如果插入key成功,则表示获得到了锁,如果有人插入成功,其他人插入失败则表示无法获得到锁,利用这套逻辑来实现分布式锁


Zookeeper:zookeeper也是企业级开发中较好的一个实现分布式锁的方案,由于本套视频并不讲解zookeeper的原理和分布式锁的实现,所以不过多阐述

微信截图_20231016173723.png

4.2 、Redis分布式锁的实现核心思路

实现分布式锁时需要实现的两个基本方法:

  • 获取锁:
* 互斥:确保只能有一个线程获取锁
* 非阻塞:尝试一次,成功返回true,失败返回false

释放锁:

* 手动释放
* 超时释放:获取锁时添加一个超时时间

微信截图_20231016173816.png

核心思路

我们利用 redissetNx 方法,当有多个线程进入时,我们就利用该方法,第一个线程进入时,redis 中就有这个 key 了,返回了1,如果结果是1,则表示他抢到了锁,那么他去执行业务,然后再删除锁,退出锁逻辑,没有抢到锁的哥们,等待一定时间后重试即可

微信截图_20231016173827.png

4.3 实现分布式锁版本一

  • 加锁逻辑
    锁的基本接口
    微信截图_20231016181725.png
  • SimpleRedisLock

利用setnx方法进行加锁,同时增加过期时间,防止死锁,此方法可以保证加锁和增加过期时间具有原子性

private static final String KEY_PREFIX="lock:"
@Override
public boolean tryLock(long timeoutSec) {
    // 获取线程标示
    String threadId = Thread.currentThread().getId()
    // 获取锁
    Boolean success = stringRedisTemplate.opsForValue()
            .setIfAbsent(KEY_PREFIX + name, threadId + "", timeoutSec, TimeUnit.SECONDS);
    return Boolean.TRUE.equals(success);
}

释放锁逻辑

SimpleRedisLock

释放锁,防止删除别人的锁

public void unlock() {
    //通过del删除锁
    stringRedisTemplate.delete(KEY_PREFIX + name);
}

修改业务代码

  @Override
    public Result seckillVoucher(Long voucherId) {
        // 1.查询优惠券
        SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
        // 2.判断秒杀是否开始
        if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀尚未开始!");
        }
        // 3.判断秒杀是否已经结束
        if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀已经结束!");
        }
        // 4.判断库存是否充足
        if (voucher.getStock() < 1) {
            // 库存不足
            return Result.fail("库存不足!");
        }
        Long userId = UserHolder.getUser().getId();
        //创建锁对象(新增代码)
        SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);
        //获取锁对象
        boolean isLock = lock.tryLock(1200);
    //加锁失败
        if (!isLock) {
            return Result.fail("不允许重复下单");
        }
        try {
            //获取代理对象(事务)
            IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
            return proxy.createVoucherOrder(voucherId);
        } finally {
            //释放锁
            lock.unlock();
        }
    }
相关文章
|
1月前
|
存储 负载均衡 NoSQL
【赵渝强老师】Redis Cluster分布式集群
Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
160 2
|
2月前
|
存储 缓存 NoSQL
Redis核心数据结构与分布式锁实现详解
Redis 是高性能键值数据库,支持多种数据结构,如字符串、列表、集合、哈希、有序集合等,广泛用于缓存、消息队列和实时数据处理。本文详解其核心数据结构及分布式锁实现,帮助开发者提升系统性能与并发控制能力。
|
2月前
|
NoSQL Redis
Lua脚本协助Redis分布式锁实现命令的原子性
利用Lua脚本确保Redis操作的原子性是分布式锁安全性的关键所在,可以大幅减少由于网络分区、客户端故障等导致的锁无法正确释放的情况,从而在分布式系统中保证数据操作的安全性和一致性。在将这些概念应用于生产环境前,建议深入理解Redis事务与Lua脚本的工作原理以及分布式锁的可能问题和解决方案。
119 8
|
4月前
|
数据采集 存储 NoSQL
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
297 67
|
3月前
|
缓存 NoSQL 算法
高并发秒杀系统实战(Redis+Lua分布式锁防超卖与库存扣减优化)
秒杀系统面临瞬时高并发、资源竞争和数据一致性挑战。传统方案如数据库锁或应用层锁存在性能瓶颈或分布式问题,而基于Redis的分布式锁与Lua脚本原子操作成为高效解决方案。通过Redis的`SETNX`实现分布式锁,结合Lua脚本完成库存扣减,确保操作原子性并大幅提升性能(QPS从120提升至8,200)。此外,分段库存策略、多级限流及服务降级机制进一步优化系统稳定性。最佳实践包括分层防控、黄金扣减法则与容灾设计,强调根据业务特性灵活组合技术手段以应对高并发场景。
957 7
|
4月前
|
缓存 监控 NoSQL
Redis设计与实现——分布式Redis
Redis Sentinel 和 Cluster 是 Redis 高可用与分布式架构的核心组件。Sentinel 提供主从故障检测与自动切换,通过主观/客观下线判断及 Raft 算法选举领导者完成故障转移,但存在数据一致性和复杂度问题。Cluster 支持数据分片和水平扩展,基于哈希槽分配数据,具备自动故障转移和节点发现机制,适合大规模高并发场景。复制机制包括全量同步和部分同步,通过复制积压缓冲区优化同步效率,但仍面临延迟和资源消耗挑战。两者各有优劣,需根据业务需求选择合适方案。
|
4月前
|
NoSQL 算法 安全
redis分布式锁在高并发场景下的方案设计与性能提升
本文探讨了Redis分布式锁在主从架构下失效的问题及其解决方案。首先通过CAP理论分析,Redis遵循AP原则,导致锁可能失效。针对此问题,提出两种解决方案:Zookeeper分布式锁(追求CP一致性)和Redlock算法(基于多个Redis实例提升可靠性)。文章还讨论了可能遇到的“坑”,如加从节点引发超卖问题、建议Redis节点数为奇数以及持久化策略对锁的影响。最后,从性能优化角度出发,介绍了减少锁粒度和分段锁的策略,并结合实际场景(如下单重复提交、支付与取消订单冲突)展示了分布式锁的应用方法。
325 3
|
4月前
|
存储 NoSQL Java
从扣减库存场景来讲讲redis分布式锁中的那些“坑”
本文从一个简单的库存扣减场景出发,深入分析了高并发下的超卖问题,并逐步优化解决方案。首先通过本地锁解决单机并发问题,但集群环境下失效;接着引入Redis分布式锁,利用SETNX命令实现加锁,但仍存在死锁、锁过期等隐患。文章详细探讨了通过设置唯一标识、续命机制等方法完善锁的可靠性,并最终引出Redisson工具,其内置的锁续命和原子性操作极大简化了分布式锁的实现。最后,作者剖析了Redisson源码,揭示其实现原理,并预告后续关于主从架构下分布式锁的应用与性能优化内容。
228 0
|
NoSQL Redis 数据库
用redis实现分布式锁时容易踩的5个坑
云栖号资讯:【点击查看更多行业资讯】在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来! 近有不少小伙伴投入短视频赛道,也出现不少第三方数据商,为大家提供抖音爬虫数据。 小伙伴们有没有好奇过,这些数据是如何获取的,普通技术小白能否也拥有自己的抖音爬虫呢? 本文会全面解密抖音爬虫的幕后原理,不需要任何编程知识,还请耐心阅读。
用redis实现分布式锁时容易踩的5个坑
|
NoSQL Java 关系型数据库
浅谈Redis实现分布式锁
浅谈Redis实现分布式锁

热门文章

最新文章