1. 再谈构造函数
1.1 构造函数体赋值
在创建对象的时候,编译器通过调用构造函数,给对象当中各个成员变量一个合适的初始值。
class Date { public: Date(int year, int month, int day) { _year = year; _month = month; _day = day; } private: int _year; int _month; int _day; };
虽然上述构造函数调用之后,对象当中已经有了一个初始值。但是不能将其称为对对象当中成员变量的初始化。构造函数体中的语句只能将其称为赋初值,而不能称为初始化。因为初始化只能初始化一次,但是构造函数体内可以多次赋值。
1.2 初始化列表
初始化列表:一个冒号开始,接着是一个逗号分隔的数据成员列表,每个“成员变量”后面跟一个放在括号当中的初始值或表达式
class Date { public: Date(int year, int month, int day) : _year(year) , _month(month) , _day(day) { } private: int _year; int _month; int _day; };
注意:
- 每个成员变量在初始化列表当中只能出现一次(初始化只能初始化一次)
- 类中包含一下成员,必须放在初始化列表位置进行初始化
- 引用成员变量
- const成员变量
- 自定义类型成员(且该类没有默认构造函数)
class A { public: A(int a) :_a(a) {} private: int _a; }; class B { public: B(int a, int ref) :_aobj(a) , _ref(ref) , _n(10) {} private: A _aobj; // 没有默认构造函数 int& _ref; // 引用 const int _n; // const };
- 尽量使用初始化列表进行初始化,因为不管是否使用初始化列表。对于自定义类型成员变量,一定会先使用初始化列表进行初始化
class Time { public: Time(int hour = 0) :_hour(hour) { cout << "Time()" << endl; } private: int _hour; }; class Date { public: Date(int day) {} private: int _day; Time _t; }; int main() { Date d(1); }
- 成员变量在类中声明次序就是其在初始化列表中的初始化顺序,与其在初始化列表的先后次序无关
class A { public: A(int a) :_a1(a) , _a2(_a1) {} void Print() { cout << _a1 << " " << _a2 << endl; } private: int _a2; int _a1; }; int main() { A aa(1); aa.Print(); } A.输出1 1 B.程序崩溃 C.编译不通过 D.输出1 随机值
1.3 explicit关键字
构造函数不仅可以构造与初始化对象,对于单个参数或除第一个参数无默认值其余均有默认值的构造函数,还具有类型转换的作用
- 单参构造函数,没有使用
explicit
修饰,具有类型转换作用
- 虽然有多个参数,但是常见对象的时候后两个参数可以不传递,仍然可以类型转换
class Date { public: explicit Date(int year) :_year(year) {} Date& operator=(const Date& d) { if (this != &d) { _year = d._year; _month = d._month; _day = d._day; } return *this; } private: int _year; int _month; int _day; }; void Test() { Date d1(2022); // 用一个整形变量给日期类型对象赋值 // 实际编译器背后会用2023构造一个无名对象,最后用无名对象给d1对象进行赋值 d1 = 2023; // 将1屏蔽掉,2放开时则编译失败,因为explicit修饰构造函数,禁止了单参构造函数类型转 //换的作用 }
用explicit
修饰构造函数,将会禁止构造函数的隐式转换
2. static成员
2.1 概念
声明为static的类成员称为类的静态成员,用static修饰的成员变量,称为类静态成员变量;用static修饰的成员函数,称之为静态成员函数。静态成员变量一定要在类外进行初始化
实现一个类,计算程序中创建了多少个类对象?
class A { public: A() { ++_scount; } A(const A & t) { ++_scount; } ~A() { --_scount; } static int GetACount() { return _scount; } private: static int _scount; }; int A::_scount = 0; void TestA() { cout << A::GetACount() << endl; A a1, a2; A a3(a1); cout << A::GetACount() << endl; }
2.2 特性
- 静态成员为所有类对象共享,不属于某个具体的类,存放在静态区
- 静态成员变量必须在类外定义,定义时不添加static关键字,类中只是声明
- 类静态成员可用类名::静态成员或者对象.静态成员 来访问
- 静态成员函数没有隐藏的this指针,不能访问任何非静态成员
- 静态成员也是类的成员,是public、protected、private访问限定符的限制
思考两个问题:
- 静态函数可以调用非静态函数吗?
- 非静态成员函数可以调用类的静态成员函数吗?
3. 友元
友元提供了一种突破封装的方式,有时提供了遍历。但是友元增加了耦合度,破坏了封装,,所以不宜多使用
友元分为:友元函数和友元类
3.1 友元函数
现在我们去尝试重载operator<<
,然后发现没办法重载。因为cout的输出流对象和隐含的this指针在抢占第一个参数的位置。this指针默认是第一个参数也就是左操作数了。但是实际使用cout需要第一个形参对象,才能正常使用。所以要将operator<<
重载成全局函数。但类外没办法访问私有成员,友元就可以来解决
class Date { public: Date(int year, int month, int day) : _year(year) , _month(month) , _day(day) {} 说明 : // d1 << cout; -> d1.operator<<(&d1, cout); 不符合常规调用 // 因为成员函数第一个参数一定是隐藏的this,所以d1必须放在<<的左侧 ostream & operator<<(ostream& _cout) { _cout << _year << "-" << _month << "-" << _day << endl; return _cout; } private: int _year; int _month; int _day; };
友元函数可以直接发访问类的私有成员,它是定义在类外部的普通函数,不属于任何类,但需要在类的内部声明,声明的时候需要加friend
关键字
class Date { friend ostream& operator<<(ostream& _cout, const Date& d); friend istream& operator>>(istream& _cin, Date& d); public: Date(int year = 1900, int month = 1, int day = 1) : _year(year) , _month(month) , _day(day) {} private: int _year; int _month; int _day; }; ostream& operator<<(ostream& _cout, const Date& d) { _cout << d._year << "-" << d._month << "-" << d._day; return _cout; } istream& operator>>(istream& _cin, Date& d) { _cin >> d._year; _cin >> d._month; _cin >> d._day; return _cin; } int main() { Date d; cin >> d; cout << d << endl; return 0; }
- 友元函数可访问类的私有和保护成员,但不是类的成员函数
- 友元函数不能用const修饰
- 友元函数可以在类的任何地方声明,不受访问限定符的限制
- 一个函数可以是多个类的友元函数
- 友元函数的调用和普通函数的调用原理相同
3.2 友元类
友元类的所有成员函数都可以是另一个类的友元函数,都可以访问另一个类的非公有成员
- 友元关系是单向的,没有交换性
比如上述Time类和Date类,在Time类中声明Date类为其友元类,那么可以在Date类中直接访问Time类的私有成员变量,但想在Time类中访问Date类中私有的成员变量则不行
- 友元关系不能传递
- 友元关系不能继承
class Time { friend class Date; // 声明日期类为时间类的友元类, //则在日期类中就直接访问Time类中的私有成员变量 public: Time(int hour = 0, int minute = 0, int second = 0) : _hour(hour) , _minute(minute) , _second(second) {} private: int _hour; int _minute; int _second; }; class Date { public: Date(int year = 1900, int month = 1, int day = 1) : _year(year) , _month(month) , _day(day) {} void SetTimeOfDate(int hour, int minute, int second) { // 直接访问时间类私有的成员变量 _t._hour = hour; _t._minute = minute; _t._second = second; } private: int _year; int _month; int _day; };
4. 内部类
概念:如果一个类定义在另一个类的内部,这个类就叫做内部类。内部类是一个独立的类,它不属于外部类。更不能通过外部类的对象访问内部类的成员。外部类对内部类没有任何优越的访问权限
注意:内部类就是外部类的友元类。内部类可以通过外部类的对象参数来访问外部类的所有成员。但是外部类不是内部类的友元
特性:
- 内部类可以定义在外部类的任何地方
- 注意内部类可以直接访问外部类的static成员,不需要外部类的对象,类名
- sizeof(外部类)= 外部类,和内部类没有任何关系
class A { private: static int k; int h; public: class B // B天生就是A的友元 { public: void foo(const A& a) { cout << k << endl;//OK cout << a.h << endl;//OK } }; }; int A::k = 1; int main() { A::B b; b.foo(A()); return 0; }
5. 匿名对象
匿名对象的特点不用取名字,它的生命周期只有这一行,到了下一行就自动调用析构函数
6. 拷贝对象时的一些编译器优化
在传参和传返回值的过场中,一般编译器会做一些优化,减少对象的拷贝。
class A { public: A(int a = 0) :_a(a) { cout << "A(int a)" << endl; } A(const A& aa) :_a(aa._a) { cout << "A(const A& aa)" << endl; } A& operator=(const A& aa) { cout << "A& operator=(const A& aa)" << endl; if (this != &aa) { _a = aa._a; } return *this; } ~A() { cout << "~A()" << endl; } private: int _a; }; void f1(A aa) {} A f2() { A aa; return aa; } int main() { // 传值传参 A aa1; f1(aa1); cout << endl; // 传值返回 f2(); cout << endl; // 隐式类型,连续构造+拷贝构造->优化为直接构造 f1(1); // 一个表达式中,连续构造+拷贝构造->优化为一个构造 f1(A(2)); cout << endl; // 一个表达式中,连续拷贝构造+拷贝构造->优化一个拷贝构造 A aa2 = f2(); cout << endl; // 一个表达式中,连续拷贝构造+赋值重载->无法优化 aa1 = f2(); cout << endl; return 0; }
7. 再次理解类和对象
现实生活当中的实体计算机并不认识,计算机只认识二进制格式的数据。如果想要让计算机认识现实生活中的实体,用户必须通过某种面向对象的语言,对实体进行描述,然后通过编写程序,创建对象后计算机才认识。
在类和对象阶段,一定要体会到类是对某一类实体(对象)来进行描述的,描述该对象具有哪些属性,哪些方法,描述完成后就形成了一种新的自定义类型,才用该自定义类型就可以实例化具体的对象
8. 练习题
静态成员变量的解法。
内部类解法