C++ 泛型编程:函数模板

简介: C++ 泛型编程:函数模板

前言

当需要编写通用的代码以处理不同类型的数据时,C++ 中的函数模板是一个很有用的工具。函数模板允许我们编写一个通用的函数定义,可以用于多种不同的数据类型,从而提高代码的重用性和灵活性。


一、什么是泛型编程

泛型编程 是一种编程范式,旨在实现可重用、通用性高的代码。它允许我们编写与特定数据类型无关的代码,使代码能够适用于多种不同的数据类型

  1. 传统的编程 方法主要依赖于特定的数据类型,需要为每个数据类型编写特定的代码。
  2. 泛型编程中,我们使用泛型类型来表示不特定的数据类型,可以在代码中使用泛型类型作为参数、变量或返回类型。使用泛型类型,我们可以编写通用的算法和数据结构,使其能够适用于不同的数据类型。

泛型编程的核心概念是模板。模板是一种代码生成机制,可以根据具体的数据类型生成对应的代码。C++中的模板可以是函数模板或类模板。函数模板允许我们定义通用的函数,而类模板允许我们定义通用的类。

二、函数模板

  1. 函数模板 概念:
  • 一种特殊的函数 可用不同类型去调用。
  • 看起来喝普通的函数相似,区别是类型可被参数化
  1. 函数模板规则:
    template 关键字用于声明开始进行泛型编程
    typename 关键字用于声明泛指类型.
    T 是泛指任意的数据类型。

下面是一个 用于交换 数据的函数模板。

三、函数模板的使用

  • 自动类型推导调用。
    自动推导类型时,必须严格匹配。
int a = 1;
int b = 2;
Swap(a, b);         // 自动推导

具体类型显示调用。

显示类型指定时,能够进行隐式类型转化。

显式指定函数

  • 模板的参数类型,而不是依赖编译器的类型推导。这可以通过在函数调用中使用尖括号来实现.
float c = 2.1;
float d = 3.1;
Swap<float>(c, d);        // 显示调用

四、多参数函数模板

多参数函数模板 就是 函数模板定义任意多个不同的参数类型。

对于多参数模板, 无法自动推导返回值的类型。可以从左到右 部分指定类型参数。

工程中 将第一个类型参数 作为 返回值参数类型。

例如:计算 a ,b 之和。

using namespace std;
template <typename T1, typename T2, typename  T3>
T1 Add(T2 a, T3 b)
{
  return static_cast<T1>(a+b);
}
int main(void)
{
  // T1 = int, T2 = double, T3 = double
  int r1 = Add<int>(0.6, 0.7);            // 第一个参数类型 作为 返回值类型,从左往右推
    // T1 = double, T2 = float, T3 = double
  double r2 = Add<double, float>(0.6, 0.7);
  // T1 = float, T2 = float, T3 = float
  float r3 = Add<float, float, float>(0.6, 0.7);
  cout << "r1 = " << r1 << endl;
  cout << "r2 = " << r2 << endl;
  cout << "r3 = " << r3 << endl;
  return 0;
}

注意

当 函数模板遇到了 普通函数,C++ 编译器优先选择 普通函数。如果函数模板可以产生更厚的匹配,则选择模板。可以通过 < > 限定编译器只匹配模板。

五,示例代码:

通过下面的例子进一步讲解:

使用 函数模板 分别对整形 数组 和 字符串数组 进行排序 打印。

using namespace std;
template <typename T>           // 函数模板:交换数据
void Swap(T& a, T& b)
{
  T c = a;
  a = b;
  b = c;
}
template<typename T>
void Sort(T a[], int len)         // 函数模板:数组元素排序
{
  for (int i = 0; i < len; i++)
  {
    for (int j = i; j < len; j++)
    {
      if (a[i] > a[j])
        Swap(a[i],a[j]);
    }
  }
}
int main(void)
{
  int a[5] = {3,5,1,2,4};
  for (int i = 0; i < 5; i++)
    cout << a[i] << ",";
  cout << endl;
  Sort(a,5);                      // 数组元素排序
  for (int j = 0; j < 5; j++)
    cout << a[j] << ",";
  cout << endl;
  string s[5] = { "Java", "C++", "Pascal", "Ruby", "Basic" };
  for (int k = 0; k < 5; k++)
    cout << s[k] << ",";
  cout << endl;
  Sort(s, 5);                     // 字符串 数组排序
  for (int n = 0;n < 5;n++)
    cout << s[n] << ",";
  cout << endl;
  return 0;
}


总结

以上是对C++函数模板的详细解析。函数模板提供了一种强大的机制,可以编写与数据类型无关的通用代码,从而提高代码的重用性和灵活性,以及更好地支持泛型编程。

相关文章
|
1天前
|
存储 缓存 C++
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
C++ 标准模板库(STL)提供了一组功能强大的容器类,用于存储和操作数据集合。不同的容器具有独特的特性和应用场景,因此选择合适的容器对于程序的性能和代码的可读性至关重要。对于刚接触 C++ 的开发者来说,了解这些容器的基础知识以及它们的特点是迈向高效编程的重要一步。本文将详细介绍 C++ 常用的容器,包括序列容器(`std::vector`、`std::array`、`std::list`、`std::deque`)、关联容器(`std::set`、`std::map`)和无序容器(`std::unordered_set`、`std::unordered_map`),全面解析它们的特点、用法
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
|
1天前
|
存储 算法 C++
深入浅出 C++ STL:解锁高效编程的秘密武器
C++ 标准模板库(STL)是现代 C++ 的核心部分之一,为开发者提供了丰富的预定义数据结构和算法,极大地提升了编程效率和代码的可读性。理解和掌握 STL 对于 C++ 开发者来说至关重要。以下是对 STL 的详细介绍,涵盖其基础知识、发展历史、核心组件、重要性和学习方法。
|
1天前
|
存储 安全 算法
深入理解C++模板编程:从基础到进阶
在C++编程中,模板是实现泛型编程的关键工具。模板使得代码能够适用于不同的数据类型,极大地提升了代码复用性、灵活性和可维护性。本文将深入探讨模板编程的基础知识,包括函数模板和类模板的定义、使用、以及它们的实例化和匹配规则。
|
4天前
|
编译器 C++
㉿㉿㉿c++模板的初阶(通俗易懂简化版)㉿㉿㉿
㉿㉿㉿c++模板的初阶(通俗易懂简化版)㉿㉿㉿
|
4天前
|
存储 机器学习/深度学习 编译器
【C++终极篇】C++11:编程新纪元的神秘力量揭秘
【C++终极篇】C++11:编程新纪元的神秘力量揭秘
|
3月前
|
安全 编译器 C++
【C++11】可变模板参数详解
本文详细介绍了C++11引入的可变模板参数,这是一种允许模板接受任意数量和类型参数的强大工具。文章从基本概念入手,讲解了可变模板参数的语法、参数包的展开方法,以及如何结合递归调用、折叠表达式等技术实现高效编程。通过具体示例,如打印任意数量参数、类型安全的`printf`替代方案等,展示了其在实际开发中的应用。最后,文章讨论了性能优化策略和常见问题,帮助读者更好地理解和使用这一高级C++特性。
114 4
|
3月前
|
算法 编译器 C++
【C++】模板详细讲解(含反向迭代器)
C++模板是泛型编程的核心,允许编写与类型无关的代码,提高代码复用性和灵活性。模板分为函数模板和类模板,支持隐式和显式实例化,以及特化(全特化和偏特化)。C++标准库广泛使用模板,如容器、迭代器、算法和函数对象等,以支持高效、灵活的编程。反向迭代器通过对正向迭代器的封装,实现了逆序遍历的功能。
48 3
|
3月前
|
编译器 C++
【c++】模板详解(1)
本文介绍了C++中的模板概念,包括函数模板和类模板,强调了模板作为泛型编程基础的重要性。函数模板允许创建类型无关的函数,类模板则能根据不同的类型生成不同的类。文章通过具体示例详细解释了模板的定义、实例化及匹配原则,帮助读者理解模板机制,为学习STL打下基础。
45 0
|
3月前
|
消息中间件 存储 安全
|
4月前
|
程序员 C++ 容器
在 C++中,realloc 函数返回 NULL 时,需要手动释放原来的内存吗?
在 C++ 中,当 realloc 函数返回 NULL 时,表示内存重新分配失败,但原内存块仍然有效,因此需要手动释放原来的内存,以避免内存泄漏。