向量化操作简介和Pandas、Numpy示例

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: Pandas是一种流行的用于数据操作的Python库,它提供了一种称为“向量化”的强大技术可以有效地将操作应用于整个列或数据系列,从而消除了显式循环的需要。在本文中,我们将探讨什么是向量化,以及它如何简化数据分析任务。

Pandas是一种流行的用于数据操作的Python库,它提供了一种称为“向量化”的强大技术可以有效地将操作应用于整个列或数据系列,从而消除了显式循环的需要。在本文中,我们将探讨什么是向量化,以及它如何简化数据分析任务。

什么是向量化?

向量化是将操作应用于整个数组或数据系列的过程,而不是逐个遍历每个元素。在Pandas中可以对整个列或Series执行操作,而无需编写显式循环。这种高效的方法利用了底层优化的库,使您的代码更快、更简洁。

向量化操作示例

1、基本算术运算

一个具有两列的DataFrame, ' a '和' B ',我们希望以元素方式添加这两列,并将结果存储在新列' C '中。通过向量化,你可以在一行代码中实现这一点:

 import pandas as pd

 data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
 df = pd.DataFrame(data)
 # Using vectorization to add columns 'A' and 'B'
 df['C'] = df['A'] + df['B']
 print(df['C'])

 Output:
 0    5
 1    7
 2    9

在本例中,加法运算df['A'] + df['B']同时应用于整个列'A'和'B',结果存储在列'C'中。

2、apply

向量化还允许对列应用自定义函数。假设你想计算一列中每个元素的平方:

 import pandas as pd

 data = {'A': [1, 2, 3]}
 df = pd.DataFrame(data)
 # Define a custom function
 def square(x):
     return x ** 2

 # Applying the 'square' function to the 'A' column
 df['A_squared'] = df['A'].apply(square)
 print(df['A_squared'])

 Output:
 0    1
 1    4
 2    9

使用.apply()将平方函数应用于整个'A'列。不需要显式循环。

3、条件操作

也将矢量化用于条件操作,比如基于列a中的条件创建一个新的列D:

 import pandas as pd

 data = {'A': [1, 2, 3]}
 df = pd.DataFrame(data)

 # Creating a new column 'D' based on a condition in column 'A'
 df['D'] = df['A'].apply(lambda x: 'Even' if x % 2 == 0 else 'Odd')

 print(df)

 Output:
    A     D
 0  1   Odd
 1  2  Even
 2  3   Odd

使用lambda函数来检查' a '中的每个元素是偶数还是奇数,并将结果分配给' D '列。

向量化的好处

在Pandas中向量化提供了几个好处:

  • 效率:操作针对性能进行了优化,并且比传统的基于循环的操作快得多,特别是在大型数据集上。
  • 清晰度:与显式循环的代码相比,代码通常更简洁,更容易阅读。
  • 易用性:您可以使用一行代码将操作应用于整个行或列,降低了脚本的复杂性。
  • 兼容性:Pandas与其他数据科学库(如NumPy和scikit-learn)无缝集成,可以在数据分析和机器学习项目中有效地使用向量化数据。

向量化提高代码的速度

向量化是一种强大的编程技术,可以加快代码的执行速度。这种方法利用底层优化的硬件指令和库,使计算更快、更高效。让我们以Python和NumPy为例,探索向量化如何加快代码的速度。

传统的基于循环的处理

在许多编程场景中,可能需要对数据元素集合执行相同的操作,例如逐个添加两个数组或对数组的每个元素应用数学函数。一般都会使用循环一次迭代一个元素并执行操作。

下面是一个没有向量化的Python示例:

 list1 = [1, 2, 3, 4, 5]
 list2 = [6, 7, 8, 9, 10]
 result = []

 for i in range(len(list1)):
     result.append(list1[i] + list2[i])
 print(result)

 Output:
 [7, 9, 11, 13, 15]

虽然此代码可以工作,但它在循环中单独处理每个元素,这对于大型数据集来说可能很慢。

使用NumPy进行向量化操作

NumPy是一个流行的Python库,提供对向量化操作的支持。它利用了优化的C和Fortran库,使其在数值计算方面比纯Python循环快得多。

下面是使用NumPy的相同加法操作:

 array1 = np.array([1, 2, 3, 4, 5])
 array2 = np.array([6, 7, 8, 9, 10])
 result = array1 + array2
 print(result)

 Output:
 [ 7  9 11 13 15]

NumPy可以一次对整个数组执行操作,并且更有效地处理底层细节。

效率比较

比较一下使用NumPy和Python中传统的基于循环的方法执行元素加法所花费的时间。我们将使用timeit模块来度量这两个方法的执行时间。下面是比较的代码:

 import numpy as np
 import timeit

 # Create two NumPy arrays and two lists for the comparison
 array1 = np.random.randint(1, 100, size=1000000)
 array2 = np.random.randint(1, 100, size=1000000)
 list1 = list(array1)
 list2 = list(array2)

 # Vectorized processing with NumPy
 def numpy_vectorized():
     result = array1 + array2

 # Traditional loop-based processing
 def loop_based():
     result = []
     for i in range(len(list1)):
         result.append(list1[i] + list2[i])

 # Measure execution time for NumPy vectorized approach
 numpy_time = timeit.timeit(numpy_vectorized, number=100)

 # Measure execution time for traditional loop-based approach
 loop_time = timeit.timeit(loop_based, number=100)

 print(f"NumPy Vectorized Approach: {numpy_time:.5f} seconds")
 print(f"Traditional Loop-Based Approach: {loop_time:.5f} seconds")


 Output:
 NumPy Vectorized Approach: 0.30273 seconds
 Traditional Loop-Based Approach: 17.91837 seconds

可以看到NumPy向量化方法对于大数据集的速度要快得多,因为它的矢量化操作是经过优化的。

向量化加速代码的原理

向量化为加快代码速度提供了几个优势:

减少循环开销:在传统循环中,存在与管理循环索引和检查循环条件相关的开销。通过向量化,可以消除这些开销,因为这些操作应用于整个数组。

优化的低级指令:像NumPy这样的库使用优化的低级指令(例如,现代cpu上的SIMD指令)来对数组执行操作,充分利用硬件功能。这可以显著提高速度。

并行性:一些向量化操作可以并行化,这意味着现代处理器可以同时执行多个操作。这种并行性进一步加快了计算速度。

总结

Pandas和NumPy等库中的向量化是一种强大的技术,可以提高Python中数据操作任务的效率。可以以高度优化的方式对整个列或数据集合执行操作,从而生成更快、更简洁的代码。所以无论是在处理基本算术、自定义函数还是条件操作,利用向量化都可以极大地改进数据分析工作流。

https://avoid.overfit.cn/post/ae2f68c9b2a548b59629755a05bbcebe

目录
相关文章
|
3月前
|
数据采集 数据处理 Python
探索数据科学前沿:Pandas与NumPy库的高级特性与应用实例
探索数据科学前沿:Pandas与NumPy库的高级特性与应用实例
50 0
|
2月前
|
数据处理 Python
在数据科学领域,Pandas和NumPy是每位数据科学家和分析师的必备工具
在数据科学领域,Pandas和NumPy是每位数据科学家和分析师的必备工具。本文通过问题解答形式,深入探讨Pandas与NumPy的高级操作技巧,如复杂数据筛选、分组聚合、数组优化及协同工作,结合实战演练,助你提升数据处理能力和工作效率。
45 5
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
50 2
|
2月前
|
存储 数据采集 数据处理
效率与精准并重:掌握Pandas与NumPy高级特性,赋能数据科学项目
在数据科学领域,Pandas和NumPy是Python生态中处理数据的核心库。Pandas以其强大的DataFrame和Series结构,提供灵活的数据操作能力,特别适合数据的标签化和结构化处理。NumPy则以其高效的ndarray结构,支持快速的数值计算和线性代数运算。掌握两者的高级特性,如Pandas的groupby()和pivot_table(),以及NumPy的广播和向量化运算,能够显著提升数据处理速度和分析精度,为项目成功奠定基础。
39 2
|
2月前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
86 5
|
3月前
|
数据采集 机器学习/深度学习 数据处理
数据科学家的秘密武器:Pandas与NumPy高级应用实战指南
【10月更文挑战第4天】在数据科学领域,Pandas和NumPy是每位数据科学家不可或缺的秘密武器。Pandas凭借其DataFrame和Series数据结构,提供高效灵活的数据处理工具;NumPy则以其强大的N维数组对象ndarray和丰富的数学函数库,成为科学计算的基石。本文通过实战示例,展示了两者如何携手助力数据科学家在数据探索中披荆斩棘。Pandas擅长数据清洗、转换和结构化操作,NumPy则专注于数值计算与矩阵运算。通过结合使用,可以实现高效的数据处理与分析,大幅提升工作效率与数据处理深度。
46 4
|
3月前
|
机器学习/深度学习 数据采集 算法
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
【10月更文挑战第5天】随着数据科学和机器学习领域的快速发展,处理大规模数据集的能力变得至关重要。Python凭借其强大的生态系统,尤其是NumPy、Pandas和SciPy等库的支持,在这个领域占据了重要地位。本文将深入探讨这些库如何帮助科学家和工程师高效地进行数据分析,并通过实际案例来展示它们的一些高级应用。
70 0
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
|
3月前
|
Python
使用 NumPy 进行数组操作的示例
使用 NumPy 进行数组操作的示例
48 2
|
3月前
|
数据采集 数据挖掘 API
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
在Python数据分析的世界里,Pandas和NumPy无疑是两颗璀璨的明星,它们为数据科学家和工程师提供了强大而灵活的工具集,用于处理、分析和探索数据。今天,我们将一起深入探索这两个库的高级功能,看看它们如何成为数据分析的加速器。
51 1
|
3月前
|
数据采集 机器学习/深度学习 数据处理
数据科学家的秘密武器:Pandas与NumPy高级应用实战指南
【7月更文挑战第14天】Pandas与NumPy在数据科学中扮演关键角色。Pandas的DataFrame和Series提供高效数据处理,如数据清洗、转换,而NumPy则以ndarray为基础进行数值计算和矩阵操作。两者结合,从数据预处理到数值分析,形成强大工具组合。示例展示了填充缺失值、类型转换、矩阵乘法、标准化等操作,体现其在实际项目中的协同效用。掌握这两者,能提升数据科学家的效能和分析深度。**
66 0