[数据结构] 用两个队列实现栈详解

简介: 我们上篇文章讲述了用两个栈实现队列 ,用过对上篇文章的学习后,我们再去学用两个队列实现栈就变得相对来说容易了很多。本篇文章会对用两个队列实现栈进行详解,希望会对你有所帮助。

 我们上篇文章讲述了用两个栈实现队列 ,用过对上篇文章的学习后,我们再去学用两个队列实现栈就变得相对来说容易了很多。本篇文章会对用两个队列实现栈进行详解,希望会对你有所帮助。



一、队列实现栈的特点分析

1、1 具体分析


队列和栈在插入数据时,队列是从队尾进行插入,栈是从栈顶插入。但是他们的删除数据是不同的。我们知道队列的特点是:先新先出 ,删除数据是在对头进行删除,栈的特点是:先进后出,也就是在栈顶进行删除。


 当我们用队列实现栈时,最根本的也是最重要的是需要解决删除的问题。我们用队列实现栈时,在队列中的删除就不是删除对头的元素了,我们需要根据栈的特点进行删除,也就是我们需要删除的是队尾的元素。

71712a6422b0471d9fa8ef311bf0fc3e.png操作时,首先我们先往队列中插入元素。注意,我们插入元素时,应该往不为空的队列中插入元素,如果两个队列都为空,我们可以随意往一个队列中插入元素。为什么要往不为空的队列中插入元素呢?我们先接着往下看。我们是用队列模拟栈,此时我们想要删除的是栈顶的元素,也就是队尾的元素。我们需要把前size-1个元素移动到另一个空的对列中,然后再删除队列中的最后一个元素,也就是队尾元素。

216fc6cfbe78480f9022f63cbfa9fd57.png

216fc6cfbe78480f9022f63cbfa9fd57.png这也是我们为什么插入元素时要往不为空的队列中插入的原因。因为我们需要一个空的队列进行来回导元素,从而达到删除队尾元素的目的。这时,插入操作和删除操作我们都是可以用队列去模拟实现出栈的效果了。插入和删除重复上面的操作就可以。216fc6cfbe78480f9022f63cbfa9fd57.png



1、2 整体概括


 通过我们上面的分析,用队列模拟实现栈和用栈模拟队列的思路大同小异。我们看用队列模拟栈的整体思路:


插入时往不为空的队列插入。第一次插入时,两个队列都为空,此时随便插入一个队列即可。

删除时,需要把不为空的队列中的元素前size-1个元素导入到空队列中。然后再删除剩下的一个元素。

返回栈顶的元素,也就是返回队尾的元素。


二、队列模拟实现栈代码的实现

 我们这里用c语言实现,所以还要手撕一个队列的代码。当然C++容器中,有队列,可以直接用。大家熟悉思路后,可以用其它语言做一下本题,OJ链接:用队列实现栈 - OJ链接(LeetCode)



2、1 手撕 队列 代码

queue.h

typedef int QDataType;
typedef struct QNode
{
  struct QNode* next;
  QDataType data;
}QNode;
typedef struct Queue
{
  QNode* head;
  QNode* tail;
  int size;
}Queue;
void QueueInit(Queue* pq);
void QueueDestory(Queue* pq);
void QueuePush(Queue* pq, QDataType x);
void QueuePop(Queue* pq);
QDataType QueueFront(Queue* pq);
QDataType QueueBack(Queue* pq);
bool QueueEmpty(Queue* pq);
int QueueSize(Queue* pq);


queue.c

void QueueInit(Queue* pq)
{
  assert(pq);
  pq->head = pq->tail = NULL;
  pq->size = 0;
}
void QueueDestory(Queue* pq)
{
  assert(pq);
  QNode* cur =pq->head;
  while (cur)
  {
    QNode* next = cur->next;
    free(cur);
    cur = next;
  }
  pq->head = pq->tail = NULL;
  pq->size = 0;
}
void QueuePush(Queue* pq, QDataType x)
{
  assert(pq);
  QNode* tmp = (QNode*)malloc(sizeof(QNode));
  if (tmp == NULL)
  {
    perror("malloc failed");
    exit(-1);
  }
  tmp->next = NULL;
  tmp->data = x;
  if (pq->head == pq->tail && pq->head == NULL)
  {
    pq->head = pq->tail = tmp;
  }
  else
  {
    pq->tail->next = tmp;
    pq->tail = tmp;
  }
  pq->size++;
}
void QueuePop(Queue* pq)
{
  assert(pq);
  assert(pq->head != NULL);
  if (pq->head->next == NULL)
  {
    free(pq->head);
    pq->head = pq->tail = NULL;
  }
  else
  {
    QNode* next = pq->head->next;
    free(pq->head);
    pq->head = next;
  }
  pq->size--;
}



2、2 用队列模拟实现栈代码

typedef int QDataType;
typedef struct QNode
{
  struct QNode* next;
  QDataType data;
}QNode;
typedef struct Queue
{
  QNode* head;
  QNode* tail;
  int size;
}Queue;
void QueueInit(Queue* pq);
void QueueDestory(Queue* pq);
void QueuePush(Queue* pq, QDataType x);
void QueuePop(Queue* pq);
QDataType QueueFront(Queue* pq);
QDataType QueueBack(Queue* pq);
bool QueueEmpty(Queue* pq);
int QueueSize(Queue* pq);
void QueueInit(Queue* pq)
{
  assert(pq);
  pq->head = pq->tail = NULL;
  pq->size = 0;
}
void QueueDestory(Queue* pq)
{
  assert(pq);
  QNode* cur =pq->head;
  while (cur)
  {
    QNode* next = cur->next;
    free(cur);
    cur = next;
  }
  pq->head = pq->tail = NULL;
  pq->size = 0;
}
void QueuePush(Queue* pq, QDataType x)
{
  assert(pq);
  QNode* tmp = (QNode*)malloc(sizeof(QNode));
  if (tmp == NULL)
  {
    perror("malloc failed");
    exit(-1);
  }
  tmp->next = NULL;
  tmp->data = x;
  if (pq->head == pq->tail && pq->head == NULL)
  {
    pq->head = pq->tail = tmp;
  }
  else
  {
    pq->tail->next = tmp;
    pq->tail = tmp;
  }
  pq->size++;
}
void QueuePop(Queue* pq)
{
  assert(pq);
  assert(pq->head != NULL);
  if (pq->head->next == NULL)
  {
    free(pq->head);
    pq->head = pq->tail = NULL;
  }
  else
  {
    QNode* next = pq->head->next;
    free(pq->head);
    pq->head = next;
  }
  pq->size--;
}
QDataType QueueFront(Queue* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  return pq->head->data;
}
QDataType QueueBack(Queue* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  return pq->tail->data;
}
bool QueueEmpty(Queue* pq)
{
  assert(pq);
  return pq->size == 0;
}
int QueueSize(Queue* pq)
{
  assert(pq);
  return pq->size;
}
typedef struct 
{
    Queue q1;
    Queue q2;
} MyStack;
MyStack* myStackCreate() 
{
    MyStack* st=(MyStack*)malloc(sizeof(MyStack));
    if(st==NULL)
        return false;
    QueueInit(&st->q1);
    QueueInit(&st->q2);
    return st;
}
void myStackPush(MyStack* obj, int x) 
{
    if(QueueSize(&obj->q1)!=0)
    {
        QueuePush(&obj->q1,x);
    }
    else
    {
        QueuePush(&obj->q2,x);
    }
}
int myStackPop(MyStack* obj) 
{
    Queue* tmp=&obj->q1;
    Queue* notmp=&obj->q2;
    if(QueueSize(notmp)==0)
    {
        tmp=&obj->q2;
        notmp=&obj->q1;
    }
    while(QueueSize(notmp)>1)
    {
        QueuePush(tmp,QueueFront(notmp));
        QueuePop(notmp);
    }
    QDataType res=QueueFront(notmp);
    QueuePop(notmp);
    return res;
}
int myStackTop(MyStack* obj) 
{
    if(QueueSize(&obj->q1)!=0)
        return QueueBack(&obj->q1);
    else
        return QueueBack(&obj->q2);
}
bool myStackEmpty(MyStack* obj) 
{
    return QueueEmpty(&obj->q1)  &&  QueueEmpty(&obj->q2);
}
void myStackFree(MyStack* obj) 
{
    QueueDestory(&obj->q1);
    QueueDestory(&obj->q2);
    free(obj);
}



三、总结

 以上就是整个用队列模拟实现栈的整个过程,主要是利用空队列删除队尾的元素。我们应该熟练掌握用队列模拟实现栈和用栈模拟实现队列,两者都是面试中的高频题目。本篇文章的讲解就到这里,希望以上对容对对你有所帮助,感谢阅读ovo~


相关文章
|
2天前
|
存储 Java
【数据结构】优先级队列(堆)从实现到应用详解
本文介绍了优先级队列的概念及其底层数据结构——堆。优先级队列根据元素的优先级而非插入顺序进行出队操作。JDK1.8中的`PriorityQueue`使用堆实现,堆分为大根堆和小根堆。大根堆中每个节点的值都不小于其子节点的值,小根堆则相反。文章详细讲解了如何通过数组模拟实现堆,并提供了创建、插入、删除以及获取堆顶元素的具体步骤。此外,还介绍了堆排序及解决Top K问题的应用,并展示了Java中`PriorityQueue`的基本用法和注意事项。
14 5
【数据结构】优先级队列(堆)从实现到应用详解
|
7天前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
|
9天前
|
存储 C语言
数据结构基础详解(C语言): 栈与队列的详解附完整代码
栈是一种仅允许在一端进行插入和删除操作的线性表,常用于解决括号匹配、函数调用等问题。栈分为顺序栈和链栈,顺序栈使用数组存储,链栈基于单链表实现。栈的主要操作包括初始化、销毁、入栈、出栈等。栈的应用广泛,如表达式求值、递归等场景。栈的顺序存储结构由数组和栈顶指针构成,链栈则基于单链表的头插法实现。
|
11天前
|
Java
【数据结构】栈和队列的深度探索,从实现到应用详解
本文介绍了栈和队列这两种数据结构。栈是一种后进先出(LIFO)的数据结构,元素只能从栈顶进行插入和删除。栈的基本操作包括压栈、出栈、获取栈顶元素、判断是否为空及获取栈的大小。栈可以通过数组或链表实现,并可用于将递归转化为循环。队列则是一种先进先出(FIFO)的数据结构,元素只能从队尾插入,从队首移除。队列的基本操作包括入队、出队、获取队首元素、判断是否为空及获取队列大小。队列可通过双向链表或数组实现。此外,双端队列(Deque)支持两端插入和删除元素,提供了更丰富的操作。
14 0
【数据结构】栈和队列的深度探索,从实现到应用详解
|
15天前
|
Linux C++ Windows
栈对象返回的问题 RVO / NRVO
具名返回值优化((Name)Return Value Optimization,(N)RVO)是一种优化机制,在函数返回对象时,通过减少临时对象的构造、复制构造及析构调用次数来降低开销。在C++中,通过直接在返回位置构造对象并利用隐藏参数传递地址,可避免不必要的复制操作。然而,Windows和Linux上的RVO与NRVO实现有所不同,且接收栈对象的方式也会影响优化效果。
|
30天前
|
存储 安全 编译器
缓冲区溢出之栈溢出(Stack Overflow
【8月更文挑战第18天】
51 3
|
17天前
crash —— 获取内核地址布局、页大小、以及栈布局
crash —— 获取内核地址布局、页大小、以及栈布局
|
17天前
|
存储 程序员 C语言
堆和栈之间有什么区别
【9月更文挑战第1天】堆和栈之间有什么区别
89 0
|
26天前
|
机器学习/深度学习 消息中间件 缓存
栈与队列的实现
栈与队列的实现
37 0
|
1月前
|
算法 C语言 C++
【practise】栈的压入和弹出序列
【practise】栈的压入和弹出序列