动态内存管理(malloc、calloc、realloc)详解

简介: 动态内存管理(malloc、calloc、realloc)详解

一、什么是动态内存


我们平常定义一个变量或者定义一个数组,这些都算静态内存开辟。而动态内存也就是我们用malloc、calloc等函数开辟出来的内存。


 所谓动态内存分配,就是指在程序执行的过程中动态地分配或者回收存储空间的分配内存的方法。 动态内存分配不像数组等静态内存分配方法那样需要预先分配存储空间,而是由系统根据程序的需要即时分配,且分配的大小就是程序要求的大小。


二、为什么要存在动态内存分配


 我们已经掌握的内存开辟方式有:

1. int val = 20;//在栈空间上开辟四个字节
2. char arr[10] = {0};//在栈空间上开辟10个字节的连续空间

 但是上述的开辟空间的方式有两个特点


  1. 空间开辟大小是固定的。
  2. 数组在申明的时候,必须指定数组的长度,它所需要的内存在编译时分配。

 但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知道,那数组的编译时开辟空间的方式就不能满足了。这时候就只能试试动态存开辟了


三、动态内存函数的介绍

3、1 malloc和free的介绍


 C语言提供了一个动态内存开辟的函数malloc,我们先看一下malloc的标准参数和返回值类型,代码如下:

void* malloc (size_t size);

 这个函数向内存申请一块连续可用的空间,并返回指向这块空间的指针。


如果开辟成功,则返回一个指向开辟好空间的指针。

如果开辟失败,则返回一个NULL指针,因此malloc的返回值一定要做检查。

返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定。

如果参数 size 为0,malloc的行为是标准是未定义的,取决于编译器。

C语言提供了另外一个函数free,专门是用来做动态内存的释放和回收的,函数原型如下:


void free (void* ptr);

 free函数用来释放动态开辟的内存。


如果参数 ptr 指向的空间不是动态开辟的,那free函数的行为是未定义的。

如果参数 ptr 是NULL指针,则函数什么事都不做。

malloc和free都声明在 stdlib.h 头文件中。

 我们来结合着下面代码一起理解一下:


#include <stdio.h>
int main()
{
    //代码1
    int num = 0;
    scanf("%d", &num);
    int arr[num] = {0};
    //代码2
    int* ptr = NULL;
    ptr = (int*)malloc(num*sizeof(int));
    if(NULL != ptr)//判断ptr指针是否为空
    {
        int i = 0;
        for(i=0; i<num; i++)
        {
            *(ptr+i) = 0;
        }
    }
    free(ptr);//释放ptr所指向的动态内存
    ptr = NULL;//是否有必要?
    return 0;
}

 我们上面的代码是:动态开辟了一块空间给了ptr,然后对空间进行赋值,且赋值为0。最后再对该空间进行了释放,并把该指针置空。



3、2 calloc的介绍


 C语言还提供了一个函数叫 calloc , calloc 函数也用来动态内存分配。原型如下:

void* calloc (size_t num, size_t size);

 该函数的功能是为 num 个大小为 size 的元素开辟一块空间,并且把空间的每个字节初始化为0。与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全0。我们来看一个例子:

#include <stdio.h>
#include <stdlib.h>
int main()
{
    int *p = (int*)calloc(10, sizeof(int));
    if(NULL != p)
    {
        //可以使用该空间
    }
    free(p);
    p = NULL;
    return 0;
}


我们来看一下其内存空间的值:

  由上图我们可以看出,calloc函数对其开辟的空间进行了初始化,把值初始化成0。我们也可以简单的理解为calloc=malloc+memset。

 那么如果我们对申请的内存空间的内容想要初始化,可以直接使用calloc,简洁方便。



3、3 reallco的介绍


realloc与malloc类似,但是我们可以把realloc看作malloc的升级版。realloc函数的出现让动态内存管理更加灵活。有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的时候内存,我们一定会对内存的大小做灵活的调整。那realloc函数就可以做到对动态开辟内存大小的调整。函数原型如下:

void* realloc (void* ptr, size_t size);


 ptr是要调整的内存地址,size 调整之后新大小,返回值为调整之后的内存起始位置。这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到新的空间。


 realloc在调整内存空间的是存在两种情况:


情况1:原有空间之后有足够大的空间;

情况2:原有空间之后没有足够大的空间。

 我门对上述的情况进行详细介绍。


 情况1:当是情况1的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。

 情况2:当是情况2 的时候,原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找一个合适大小的连续空间来使用。这样函数返回的是一个新的内存地址。


c95b0ae3e97a4549b4a785f6354b9470.png


由于上述的两种情况,realloc函数的使用就要注意一些。我们看下面一个例子:

#include <stdio.h>
int main()
{
    int *ptr = (int*)malloc(100);
    if(ptr != NULL)
    {
        //业务处理
    }
    else
    {
        exit(EXIT_FAILURE);
    }
    //扩展容量
    //代码1
    ptr = (int*)realloc(ptr, 1000);//这样可以吗?(如果申请失败会如何?)
    //代码2
    int*p = NULL;
    p = realloc(ptr, 1000);
    if(p != NULL)
    {
        ptr = p;
    }
    //业务处理
    free(ptr);
    return 0;
}



  我们看上面的代码1可行吗?答案是不可行的。当我们reallco开辟内存失败时,返回空指针。这时候我们原指针就已经找不到了。所以是不行的。代码2是安全的,我们可以放心使用。

四、常见的动态内存错误

4、1 对NULL指针的解引用操作

 我们看如下代码:

void test()
{
    int *p = (int *)malloc(INT_MAX/4);
    *p = 20;//如果p的值是NULL,就会有问题
    free(p);
}


上述代码存在的问题是:并没有检测malloc开辟内存是否成功。如果开辟失败的话,p指针为空,对空指针解引用是错误的。

4、2 对动态开辟空间的越界访问


直接看代码:

void test()
{
    int i = 0;
    int *p = (int *)malloc(10*sizeof(int));
    if(NULL == p)
    {
        exit(EXIT_FAILURE);
    }
    for(i=0; i<=10; i++)
    {
        *(p+i) = i;//当i是10的时候越界访问
    }
    free(p);
}

 上述代码的问题是越界访问。我们只开辟了十个元素的大小空间,而对11个元素的空间进行了解引用操作,显然是不可以的,

4、3 对非动态开辟内存使用free释放


老样子,看代码:

void test()
{
    int a = 10;
    int *p = &a;
    free(p);//ok?
}


  上述代码错误的就比较明显了。free是只能对动态开辟空间进行释放,不能对静态开辟空间释放。

4、4 使用free释放一块动态开辟内存的一部分

void test()
{
    int *p = (int *)malloc(100);
    p++;
    free(p);//p不再指向动态内存的起始位置
}

 上述的代码对动态开辟的空间完全释放了吗?答案是没有!我们一定要注意释放动态开辟空间时,指针是否指向我们开辟空间的起始地址。

4、5 对同一块动态内存多次释放

void test()
{
    int *p = (int *)malloc(100);
    free(p);
    free(p);//重复释放
}



对同一块动态开辟的内存不能进行多次释放。只能进行一次释放。

4、6 动态开辟内存忘记释放(内存泄漏)

void test()
{
    int *p = (int *)malloc(100);
    if(NULL != p)
    {
        *p = 20;
    }
}
int main()
{
    test();
}



 上述代码就是我们最最常见,也是最容易犯的错误。我们一定要记得对动态开辟的空间进行释放。否则就会造成内存泄露。

  我们对动态内存管理的讲解就到这里,希望以上内容会对你有所帮助。感谢阅读ovo~

相关文章
|
2月前
|
程序员 C++ 容器
在 C++中,realloc 函数返回 NULL 时,需要手动释放原来的内存吗?
在 C++ 中,当 realloc 函数返回 NULL 时,表示内存重新分配失败,但原内存块仍然有效,因此需要手动释放原来的内存,以避免内存泄漏。
|
2月前
|
编译器 C语言 C++
详解C/C++动态内存函数(malloc、free、calloc、realloc)
详解C/C++动态内存函数(malloc、free、calloc、realloc)
351 1
|
2月前
一刻也没有为它哀悼~接下来登场的是动态内存分配的malloc与realloc以及free函数
一刻也没有为它哀悼~接下来登场的是动态内存分配的malloc与realloc以及free函数
80 0
|
4月前
|
程序员 C++
malloc与free的内存管理奥秘:技术分享
【8月更文挑战第22天】在软件开发过程中,内存管理是一个至关重要的环节。特别是在使用C或C++这类语言时,程序员需要手动管理内存的分配与释放。malloc和free函数是这一过程中的核心工具。本文将深入探讨malloc如何分配内存,以及free如何知道释放多少内存,帮助你在工作学习中更好地掌握这一技术干货。
108 4
|
4月前
|
存储 算法 安全
实现一个malloc内存分配器
需要注意的是,这个例子是一个非常简单的实现,它只是为了演示原理,对于一个强壮的、用于生产环境的内存分配器来说还远远不够。一个成熟的分配器将考虑到多线程的同步、更复杂的内存分配算法、碎片整理策略、错误处理,以及安全性问题,比如防止缓冲区溢出。在实际应用程序中,你应该使用标准库提供的或操作系统提供的内存分配器,除非你确实需要并且能够处理自己实现内存分配器所带来的复杂性。
45 3
|
5月前
|
存储 编译器 程序员
【C/C++】动态内存管理(C:malloc,realloc,calloc,free)
探索C++与C语言的动态内存管理:从malloc到new/delete,了解内存分布及栈、堆的区别。文章涵盖malloc、realloc、calloc与free在C中的使用,强调内存泄漏的风险。C++引入new和delete,支持对象构造与析构,还包括operator new和placement-new。深入分析内存管理机制,揭示C与C++在内存处理上的异同。别忘了,正确释放内存至关重要!
|
27天前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
211 1
|
17天前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
26天前
|
Java
JVM内存参数
-Xmx[]:堆空间最大内存 -Xms[]:堆空间最小内存,一般设置成跟堆空间最大内存一样的 -Xmn[]:新生代的最大内存 -xx[use 垃圾回收器名称]:指定垃圾回收器 -xss:设置单个线程栈大小 一般设堆空间为最大可用物理地址的百分之80
|
27天前
|
Java
JVM运行时数据区(内存结构)
1)虚拟机栈:每次调用方法都会在虚拟机栈中产生一个栈帧,每个栈帧中都有方法的参数、局部变量、方法出口等信息,方法执行完毕后释放栈帧 (2)本地方法栈:为native修饰的本地方法提供的空间,在HotSpot中与虚拟机合二为一 (3)程序计数器:保存指令执行的地址,方便线程切回后能继续执行代码
21 3