【数据结构】树和二叉树的概念及结构(一)

简介: 【数据结构】树和二叉树的概念及结构(一)

一,树的概念及结构

       1,树的定义

树是一种非线性数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

树(Tree)是n(n>=0)个结点的有限集;


n=0时称为空树;


在任意一颗非空树中:


1,有且仅有一个特定的称为根(Root)的结点;


2,当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,......,Tm,其中每一个集合本身又是一棵树,并且称为跟的子树(SubTree);


如下图所示:


注意:树形结构中,子树之间不能有交集,否则就不是树形结构

       2,树结点的分类及关系

结点的度:一个结点含有的子树的个数称为该结点的度; 如上图:A的为4

叶结点或终端结点:度为0的结点称为叶结点; 如上图:K,G,L,M,N...等结点为叶结点

非终端结点或分支结点:度不为0的结点; 如上图:B,C,E...等结点为分支结点

双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父节点

孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点

兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点

树的度:一棵树中,最大的结点的度称为树的度; 如上图:树的度为4

结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推

树的高度或深度:树中结点的最大层次; 如上图:树的高度为4

堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为堂兄弟结点

结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先,C是G,H的祖先

子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙,G,H是C的子孙

森林:由m(m>0)棵互不相交的树的集合称为森林


     3,树的表示

      树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法孩子表示法孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法

typedef int DataType;
struct Node
{
 struct Node* _firstChild1; // 第一个孩子结点
 struct Node* _pNextBrother; // 指向其下一个兄弟结点
 DataType _data; // 结点中的数据域
};

图解:

二,二叉树的概念及结构

       1,二叉树的定义

二叉树(Binary Tree)是n(n>=0) 个结点的有限集合;

该集合或者为空集(称为空二叉树);

或者由一个根结点和两颗互不相交的,分别为根结点的左子树和右子树的二叉树组成;

图示:

由上图可以看出:

1,二叉树不存在度大于2的结点

2,二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

二叉树具有以下五种基本形态:

       2,特殊的二叉树

1,斜树

2,满二叉树

一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是2^k-1 ,则它就是满二叉树

所有的结点都只有左子树的二叉树叫左斜树;

所有的结点都只有右子树的二叉树叫右斜树;

斜树图示:

2,满二叉树

一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是2^k-1 ,则它就是满二叉树

3,完全二叉树

完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对 应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树

       3,二叉树的性质

1,若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1)个结点

2,若规定根结点的层数为为1,则深度为h的二叉树的最大结点数是 2^h-1

3,对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n1 ,则有 n0=n1+1

4,若规定根结点的层数为1,有n个结点的满二叉树的深度,h=log2(n+1)

5,对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有结点从0开始编号,则对于序号为i的结点有:

1,若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点

2,若2i+1<n,左孩子序号:2i+1

3,若2i+1>n,右孩子序号:2i+2

    4,二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构

1,顺序存储

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

2,链式储存

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系;

通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址;

链式结构又分为二叉链和三叉链

typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
   struct BinTreeNode* _pLeft; // 指向当前节点左孩子
   struct BinTreeNode* _pRight; // 指向当前节点右孩子
   BTDataType _data; // 当前节点值域
}
// 三叉链
struct BinaryTreeNode
{
   struct BinTreeNode* _pParent; // 指向当前节点的双亲
   struct BinTreeNode* _pLeft; // 指向当前节点左孩子
   struct BinTreeNode* _pRight; // 指向当前节点右孩子
   BTDataType _data; // 当前节点值域
};

第一阶段就到这里了,带大家先了解一下树和二叉树的原理;

后面博主会陆续更新;

如有不足之处欢迎来补充交流!

完结。。。

目录
相关文章
|
1月前
|
存储 算法
数据结构与算法学习二二:图的学习、图的概念、图的深度和广度优先遍历
这篇文章详细介绍了图的概念、表示方式以及深度优先遍历和广度优先遍历的算法实现。
52 1
数据结构与算法学习二二:图的学习、图的概念、图的深度和广度优先遍历
|
16天前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
58 16
|
16天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
65 8
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
20 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆
|
1月前
探索顺序结构:栈的实现方式
探索顺序结构:栈的实现方式
|
17天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
91 9
|
7天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
16 1
|
10天前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
13天前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。