语音信号的A律压缩和u律压缩matlab仿真

简介: 语音信号的A律压缩和u律压缩matlab仿真

1.算法运行效果图预览
1.jpeg
2.jpeg
3.jpeg
4.jpeg

2.算法运行软件版本
MATLAB2022a

3.算法理论概述
语音信号的量化过程是将采样后的信号按整个声波的幅度划分成有限个区段的集合,把落入某个区段内的样值归为一类,并赋于相同的量化值。采取二进制的方式,以8位或16位的方式来划分纵轴。也就是说在一个以8位为记录模式的音效中,其纵轴将会被划分为个量化等级,用以记录其幅度大小。采样原理的示意图如图所示:

b920fce3a9525da63e8c853a132a6eaf_82780907_202310122343560128852652_Expires=1697126036&Signature=9k3ujQ67SgBoe3IwaV02WU5pt30%3D&domain=8.png

   非均匀量化,用数字值表示采样后的信号幅度值的过程即为量化,量化后信号就变成了数字信号。量化可以分为均匀量化和非均匀量化两种。量化过程会产生量化误差。而量化误差在接收端的表现形式即为量化噪声。非均匀量化根据幅度的不同区间来确定量化间隔,幅度小的区间量化间隔小,幅度大的区间量化间隔大,故可以有效改善小型号的量噪比。A律压缩和μ律压缩是一种常见的语音信号压缩技术,用于在数字通信中对语音信号进行编码。这些算法可以有效地减少数据传输所需的比特数,同时保持足够的音频质量。本文将详细介绍A律压缩和μ律压缩算法的原理、实现以及应用领域。 

3.1 A律压缩算法
A律压缩是一种非线性压缩算法,常用于8位PCM(脉冲编码调制)语音信号的压缩。其原理是通过对输入信号的幅度进行非线性映射,以便在更小的比特数上表示信号。A律压缩使用以下数学公式:
436dbaf072be0e79803a2e9bc5ff2c0e_82780907_202310122344060941582014_Expires=1697126046&Signature=3mR%2FQbPu8AbA%2BJBpTWGpjfLCJTE%3D&domain=8.png

   其中x表示为归一化的压缩器输入电压;y为归一化的压缩器输出电压,A为压扩参数,表示压缩程度。很明显,小信号时为线性特性,大信号时近似为对数特性。这种压扩特性常把压缩、量化和编码合为一体。A律可用13段折线逼近(相当于A=87.6),便于用数字电路实现。 

   A律13折线特性曲线如下所示:

8ff536ed942dc17408d6a2dc3c4190d1_82780907_202310122345110769315217_Expires=1697126111&Signature=Q0pa4QeI81Xxb%2FnblNkXfCy8aTA%3D&domain=8.png

3.2 μ律压缩算法
μ律压缩是一种类似于A律压缩的非线性压缩算法,通常在欧洲和亚洲地区使用。μ律压缩同样通过非线性映射来减小输入信号的幅度范围,从而降低所需的比特数。μ律压缩使用以下数学公式:

b9a12b5027085d8d5fce96319ddc6a07_82780907_202310122346010581248957_Expires=1697126161&Signature=2%2FExPg2fLAo8Q8HWM9pkv8A2JGM%3D&domain=8.png

   μ律压缩在欧洲和亚洲的语音通信系统中广泛应用。类似于A律压缩,它可以有效地降低传输带宽,并保持合理的语音质量。μ律(m-Law)压扩主要用在北美和日本等地区的数字电话通信中。m为确定压缩量的参数,它反映最大量化间隔和最小量化间隔之比,通常取100≤m≤500。

    A律压缩和μ律压缩算法是在数字通信中常用的语音信号压缩技术。通过非线性映射,它们可以有效地减小数据传输所需的比特数,同时保持合理的语音质量。选择适当的算法取决于地区和特定应用的要求。

4.部分核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')

[y, fs] = audioread('signal.wav');

%=======A律编解码===================================
figure(1);
subplot(311),plot(y);
title('语音信号');
code2=alaw(y);
subplot(312),plot(code2);
title('A律编码语音信号');
u_code2=unalaw(code2);
subplot(313),plot(u_code2);
title('A律解码语音信号');
error2=u_code2-y;
figure(2);
plot(error2);
title('A律编解码误差');

%=======U律编解码===================================
figure(3);
subplot(311),plot(y);
title('语音信号');
code3=mulaw(y);
subplot(312),plot(code3);
title('U律编码语音信号');
u_code3=unmulaw(code3);
subplot(313),plot(u_code3);
title('U律解码语音信号');
error3=u_code3-y;
figure(4);
plot(error3);
title('U律编解码误差');
相关文章
|
13天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
14天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
12天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
15天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
13天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
14天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
14天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
34 3
|
18天前
|
机器学习/深度学习 存储 算法
基于Actor-Critic(A2C)强化学习的四旋翼无人机飞行控制系统matlab仿真
基于Actor-Critic强化学习的四旋翼无人机飞行控制系统,通过构建策略网络和价值网络学习最优控制策略。MATLAB 2022a仿真结果显示,该方法在复杂环境中表现出色。核心代码包括加载训练好的模型、设置仿真参数、运行仿真并绘制结果图表。仿真操作步骤可参考配套视频。
35 0
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
200 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
129 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章

下一篇
无影云桌面