带你读《图解算法小抄》十二、树(11)https://developer.aliyun.com/article/1348171?groupCode=tech_library
2)完整代码
import isPowerOfTwo from '../../../algorithms/math/is-power-of-two/isPowerOfTwo'; export default class SegmentTree { /** * @param {number[]} inputArray * @param {function} operation - binary function (i.e. sum, min) * @param {number} operationFallback - operation fallback value (i.e. 0 for sum, Infinity for min) */ constructor(inputArray, operation, operationFallback) { this.inputArray = inputArray; this.operation = operation; this.operationFallback = operationFallback; // Init array representation of segment tree. this.segmentTree = this.initSegmentTree(this.inputArray); this.buildSegmentTree(); } /** * @param {number[]} inputArray * @return {number[]} */ initSegmentTree(inputArray) { let segmentTreeArrayLength; const inputArrayLength = inputArray.length; if (isPowerOfTwo(inputArrayLength)) { // If original array length is a power of two. segmentTreeArrayLength = (2 * inputArrayLength) - 1; } else { // If original array length is not a power of two then we need to find // next number that is a power of two and use it to calculate // tree array size. This is happens because we need to fill empty children // in perfect binary tree with nulls.And those nulls need extra space. const currentPower = Math.floor(Math.log2(inputArrayLength)); const nextPower = currentPower + 1; const nextPowerOfTwoNumber = 2 ** nextPower; segmentTreeArrayLength = (2 * nextPowerOfTwoNumber) - 1; } return new Array(segmentTreeArrayLength).fill(null); } /** * Build segment tree. */ buildSegmentTree() { const leftIndex = 0; const rightIndex = this.inputArray.length - 1; const position = 0; this.buildTreeRecursively(leftIndex, rightIndex, position); } /** * Build segment tree recursively. * * @param {number} leftInputIndex * @param {number} rightInputIndex * @param {number} position */ buildTreeRecursively(leftInputIndex, rightInputIndex, position) { // If low input index and high input index are equal that would mean // the we have finished splitting and we are already came to the leaf // of the segment tree. We need to copy this leaf value from input // array to segment tree. if (leftInputIndex === rightInputIndex) { this.segmentTree[position] = this.inputArray[leftInputIndex]; return; } // Split input array on two halves and process them recursively. const middleIndex = Math.floor((leftInputIndex + rightInputIndex) / 2); // Process left half of the input array. this.buildTreeRecursively(leftInputIndex, middleIndex, this.getLeftChildIndex(position)); // Process right half of the input array. this.buildTreeRecursively(middleIndex + 1, rightInputIndex, this.getRightChildIndex(position)); // Once every tree leaf is not empty we're able to build tree bottom up using // provided operation function. this.segmentTree[position] = this.operation( this.segmentTree[this.getLeftChildIndex(position)], this.segmentTree[this.getRightChildIndex(position)], ); } /** * Do range query on segment tree in context of this.operation function. * * @param {number} queryLeftIndex * @param {number} queryRightIndex * @return {number} */ rangeQuery(queryLeftIndex, queryRightIndex) { const leftIndex = 0; const rightIndex = this.inputArray.length - 1; const position = 0; return this.rangeQueryRecursive( queryLeftIndex, queryRightIndex, leftIndex, rightIndex, position, ); } /** * Do range query on segment tree recursively in context of this.operation function. * * @param {number} queryLeftIndex - left index of the query * @param {number} queryRightIndex - right index of the query * @param {number} leftIndex - left index of input array segment * @param {number} rightIndex - right index of input array segment * @param {number} position - root position in binary tree * @return {number} */ rangeQueryRecursive(queryLeftIndex, queryRightIndex, leftIndex, rightIndex, position) { if (queryLeftIndex <= leftIndex && queryRightIndex >= rightIndex) { // Total overlap. return this.segmentTree[position]; } if (queryLeftIndex > rightIndex || queryRightIndex < leftIndex) { // No overlap. return this.operationFallback; } // Partial overlap. const middleIndex = Math.floor((leftIndex + rightIndex) / 2); const leftOperationResult = this.rangeQueryRecursive( queryLeftIndex, queryRightIndex, leftIndex, middleIndex, this.getLeftChildIndex(position), ); const rightOperationResult = this.rangeQueryRecursive( queryLeftIndex, queryRightIndex, middleIndex + 1, rightIndex, this.getRightChildIndex(position), ); return this.operation(leftOperationResult, rightOperationResult); } /** * Left child index. * @param {number} parentIndex * @return {number} */ getLeftChildIndex(parentIndex) { return (2 * parentIndex) + 1; } /** * Right child index. * @param {number} parentIndex * @return {number} */ getRightChildIndex(parentIndex) { return (2 * parentIndex) + 2; }}
3)参考资料
∙ 维基百科
∙ YouTube
带你读《图解算法小抄》十二、树(13)https://developer.aliyun.com/article/1348168?groupCode=tech_library