带你读《图解算法小抄》十四、排序(16)

简介: 带你读《图解算法小抄》十四、排序(16)

带你读《图解算法小抄》十四、排序(15)https://developer.aliyun.com/article/1348135?groupCode=tech_library


总结思路

  • 将无序序列构建成一个堆,根据升序降序需求选择大顶堆
  • 将堆顶元素与末尾元素交换,将最大元素「沉」到数组末端
  • 重新调整结构,使其满足堆定义,然后继续交换堆顶与当前末尾元素,反复执行调整、交换步骤,直到整个序列有序。

步骤

这里想说的几点注意事项(代码实现的关键思路):

 

  • 第一步构建初始堆:是自底向上构建,从最后一个非叶子节点开始。
  • 第二步就是下沉操作让尾部元素与堆顶元素交换,最大值被放在数组末尾,并且缩小数组的length,不参与后面大顶堆的调整
  • 第三步就是调整:是从上到下,从左到右,因为堆顶元素下沉到末尾了,要重新调整这颗大顶堆

代码模板

官方的代码模板我参考了下,比一些书籍写的都好记,所以可以参考作为堆排序的模板

/**
 * @param {number[]} nums
 * @param {number} k
 * @return {number}
 */
 // 整个流程就是上浮下沉var findKthLargest = function(nums, k) {
   let heapSize=nums.length
    buildMaxHeap(nums,heapSize) // 构建好了一个大顶堆
    // 进行下沉 大顶堆是最大元素下沉到末尾
    for(let i=nums.length-1;i>=nums.length-k+1;i--){
        swap(nums,0,i)
        --heapSize // 下沉后的元素不参与到大顶堆的调整
        // 重新调整大顶堆
         maxHeapify(nums, 0, heapSize);
    }
    return nums[0]
   // 自下而上构建一颗大顶堆
   function buildMaxHeap(nums,heapSize){
     for(let i=Math.floor(heapSize/2)-1;i>=0;i--){
        maxHeapify(nums,i,heapSize)
     }
   }
   // 从左向右,自上而下的调整节点
   function maxHeapify(nums,i,heapSize){
       let l=i*2+1
       let r=i*2+2
       let largest=i
       if(l < heapSize && nums[l] > nums[largest]){
           largest=l
       }
       if(r < heapSize && nums[r] > nums[largest]){
           largest=r
       }
       if(largest!==i){
           swap(nums,i,largest) // 进行节点调整
           // 继续调整下面的非叶子节点
           maxHeapify(nums,largest,heapSize)
       }
   }
   function swap(a,  i,  j){
        let temp = a[i];
        a[i] = a[j];
        a[j] = temp;
   }};

进行堆排序

findKthLargest(nums,nums.length)// 或者调整一下 let i=nums.length-1;i>=nums.length-k+1;的条件就行

5复杂度

名称

最佳情况

平均情况

最坏情况

内存

稳定性

备注

堆排序

n log(n)

n log(n)

n log(n)

1

 

6参考资料

维基百科

 

 

带你读《图解算法小抄》十四、排序(17)https://developer.aliyun.com/article/1348133?groupCode=tech_library


相关文章
|
2月前
|
算法
【算法】二分查找——在排序数组中查找元素的第一个和最后一个位置
【算法】二分查找——在排序数组中查找元素的第一个和最后一个位置
|
2月前
|
搜索推荐 算法 Java
现有一个接口DataOperation定义了排序方法sort(int[])和查找方法search(int[],int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法
该博客文章通过UML类图和Java源码示例,展示了如何使用适配器模式将QuickSort类和BinarySearch类的排序和查找功能适配到DataOperation接口中,实现算法的解耦和复用。
22 1
现有一个接口DataOperation定义了排序方法sort(int[])和查找方法search(int[],int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法
|
2月前
|
算法 搜索推荐 Java
算法实战:手写归并排序,让复杂排序变简单!
归并排序是一种基于“分治法”的经典算法,通过递归分割和合并数组,实现O(n log n)的高效排序。本文将通过Java手写代码,详细讲解归并排序的原理及实现,帮助你快速掌握这一实用算法。
38 0
|
2月前
|
算法 关系型数据库 MySQL
揭秘MySQL中的版本号排序:这个超级算法将颠覆你的排序世界!
【8月更文挑战第8天】在软件开发与数据管理中,正确排序版本号对软件更新及数据分析至关重要。因MySQL默认按字符串排序版本号,可能出现&#39;1.20.0&#39;在&#39;1.10.0&#39;之前的不合理情况。解决办法是将版本号各部分转换为整数后排序。例如,使用`SUBSTRING_INDEX`和`CAST`函数从`software`表的`version`字段提取并转换版本号,再按这些整数排序。这种方法可确保版本号按逻辑正确排序,适用于&#39;major.minor.patch&#39;格式的版本号。对于更复杂格式,需调整处理逻辑。掌握此技巧可有效应对版本号排序需求。
107 3
|
2月前
|
算法 搜索推荐
算法设计 (分治法应用实验报告)基于分治法的合并排序、快速排序、最近对问题
这篇文章是关于分治法应用的实验报告,详细介绍了如何利用分治法实现合并排序和快速排序算法,并探讨了使用分治法解决二维平面上的最近对问题的方法,包括伪代码、源代码实现及时间效率分析,并附有运行结果和小结。
|
2月前
|
存储 算法 Java
LeetCode初级算法题:反转链表+统计N以内的素数+删除排序数组中的重复项Java详解
LeetCode初级算法题:反转链表+统计N以内的素数+删除排序数组中的重复项Java详解
20 0
|
3月前
|
存储 算法 搜索推荐
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
【7月更文挑战第12天】归并排序是高效稳定的排序算法,采用分治策略。Python 实现包括递归地分割数组及合并已排序部分。示例代码展示了如何将 `[12, 11, 13, 5, 6]` 分割并归并成有序数组 `[5, 6, 11, 12, 13]`。虽然 $O(n log n)$ 时间复杂度优秀,但需额外空间,适合大规模数据排序。对于小规模数据,可考虑其他算法。**
67 4
|
4月前
|
算法 Java 调度
Java数据结构与算法:拓扑排序
Java数据结构与算法:拓扑排序
|
4月前
|
算法 搜索推荐 C++
C++之STL常用算法(遍历、查找、排序、拷贝、替换、算数生成、集合)
C++之STL常用算法(遍历、查找、排序、拷贝、替换、算数生成、集合)
|
4月前
|
人工智能 算法 搜索推荐
蓝桥杯宝藏排序题目算法(冒泡、选择、插入)
以下是内容的摘要: 本文介绍了三种排序算法:冒泡排序、选择排序和插入排序。冒泡排序通过不断交换相邻的逆序元素逐步排序,最坏情况下需要 O(n^2) 次比较。选择排序在每轮中找到剩余部分的最小元素并放到已排序序列的末尾,同样具有 O(n^2) 时间复杂度。插入排序则是将每个元素插入到已排序序列的正确位置,时间复杂度也是 O(n^2),但空间复杂度为 O(1)。
下一篇
无影云桌面