pytorch安装GPU版本 (Cuda12.1)教程: Windows、Mac和Linux系统快速安装指南

简介: pytorch安装GPU版本 (Cuda12.1)教程: Windows、Mac和Linux系统快速安装指南

🌷🍁 博主 libin9iOak带您 Go to New World.✨🍁

🦄 个人主页——libin9iOak的博客🎐
🐳 《面试题大全》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺
🌊 《IDEA开发秘籍》学会IDEA常用操作,工作效率翻倍~💐
🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🍁🐥

GPU版本PyTorch(CUDA 12.1)清华源快速安装教程

摘要

本教程将为您提供在Windows、Mac和Linux系统上安装和配置GPU版本的PyTorch(CUDA 12.1)的详细步骤。我们将使用清华大学开源软件镜像站作为软件源以加快下载速度。在今天的学习中,您将学会如何在不同操作系统上轻松安装和配置深度学习框架PyTorch,为您的AI项目做好准备。

前言

PyTorch是一个流行的开源深度学习框架,由Facebook AI Research实验室开发和维护。它提供了广泛的工具和函数,用于构建和训练各种神经网络模型。GPU版本的PyTorch可以利用GPU的并行计算能力来加速训练过程,从而显著提高深度学习模型的训练速度。

在本教程中,我们将分别介绍在Windows系统、Mac系统和Linux系统上安装和配置GPU版本的PyTorch(CUDA 12.1)。我们将使用清华大学开源软件镜像站作为软件源,以便快速下载所需的软件包。

1. 在Windows系统上安装GPU版本PyTorch(CUDA 12.1)

步骤1:检查GPU兼容性

首先,确保您的Windows计算机配备了兼容的NVIDIA GPU。访问NVIDIA官方网站查找GPU的兼容性列表。

步骤2:安装NVIDIA驱动程序

前往NVIDIA官方网站下载并安装适用于您的GPU型号的最新驱动程序。

步骤3:安装CUDA Toolkit

从NVIDIA官方网站下载并安装与您的GPU兼容的CUDA Toolkit(版本12.1)。

步骤4:配置环境变量

将CUDA Toolkit的安装路径添加到系统环境变量中,以便PyTorch能够正确找到CUDA。

步骤5:创建虚拟环境

使用Anaconda创建一个新的虚拟环境(如pytorch310),并激活它。

步骤6:设置清华源

在虚拟环境中,使用以下命令设置清华源以加速安装过程:

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

步骤7:安装PyTorch

使用以下命令在Windows系统上安装GPU版本的PyTorch(CUDA 12.1):

pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1+cu118 -f https://download.pytorch.org/whl/torch_stable.html

步骤8:验证安装是否成功

在Python环境中运行以下代码来验证是否成功安装了GPU版本的PyTorch:

import torch
print(torch.cuda.is_available())

如果输出结果为True,则说明PyTorch成功使用了GPU加速,安装完成。

2. 在Mac系统上安装GPU版本PyTorch(CUDA 12.1)

步骤1:检查GPU兼容性

确保您的Mac计算机搭载了支持Metal的GPU。访问苹果官方网站查找GPU的兼容性列表。

步骤2:安装Xcode

从Mac App Store下载并安装Xcode,它包含必要的开发工具和编译器。

步骤3:安装Homebrew

在终端中运行安装Homebrew的命令,以便之后安装其他软件。

步骤4:安装CUDA Toolkit

使用Homebrew安装与您的Mac GPU兼容的CUDA Toolkit(版本12.1):

brew install --cask cuda@11.1

步骤5:创建虚拟环境

使用Anaconda创建一个新的虚拟环境(如pytorch310),并激活它。

步骤6:设置清华源

在虚拟环境中,使用以下命令设置清华源以加速安装过程:

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

步骤7:安装PyTorch

使用以下命令在Mac系统上安装GPU版本的PyTorch(CUDA 12.1):

pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1+cu118 -f https://download.pytorch.org/whl/torch_stable.html

步骤8:验证安装是否成功

在Python环境中运行以下代码来验证是否成功安装了GPU版本的PyTorch:

import torch
print(torch.cuda.is_available())

如果输出结果为True,则说明PyTorch成功使用了GPU加速,安装完成。

3. 在Linux系统上安装GPU版本PyTorch(CUDA 12.1)

步骤1:检查GPU兼容性

确保您的Linux计算机搭载了兼容的NVIDIA GPU。访问NVIDIA官方网站查找GPU的兼容性列表。

步骤2:安装NVIDIA驱动程序

根据您的Linux发行版,从NVIDIA官方网站或使用包管理器安装适用于您的GPU型号的最新驱动程序。

步骤3:安装CUDA Toolkit

使用以下命令在Linux系统上下载并安装与您的GPU兼容的CUDA Toolkit(版本12.1):

wget https://developer.download.nvidia.com/compute
/cuda/11.1.1/local_installers/cuda_11.1.1_455.32.00_linux.run
sudo sh cuda_11.1.1_455.32.00_linux.run

步骤4:配置环境变量

将CUDA Toolkit的安装路径添加到系统环境变量中,以便PyTorch能够正确找到CUDA。

步骤5:创建虚拟环境

使用Anaconda创建一个新的虚拟环境(如pytorch310),并激活它。

步骤6:设置清华源

在虚拟环境中,使用以下命令设置清华源以加速安装过程:

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

步骤7:安装PyTorch

使用以下命令在Linux系统上安装GPU版本的PyTorch(CUDA 12.1):

pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1+cu118 -f https://download.pytorch.org/whl/torch_stable.html

步骤8:验证安装是否成功

在Python环境中运行以下代码来验证是否成功安装了GPU版本的PyTorch:

import torch
print(torch.cuda.is_available())

如果输出结果为True,则说明PyTorch成功使用了GPU加速,安装完成。

今日学习总结

在本教程中,我们详细介绍了在Windows、Mac和Linux系统上安装和配置GPU版本的PyTorch(CUDA 12.1)。您学会了检查GPU兼容性、安装NVIDIA驱动程序和CUDA Toolkit、设置环境变量以及使用清华源加速安装过程。最后,您还验证了PyTorch是否成功使用了GPU加速。

通过学习本教程,您现在已经掌握了在不同操作系统上安装GPU版本PyTorch的方法,为深度学习项目的开发和研究做好了准备。祝您在未来的学习和实践中取得更多成果!如有任何问题或疑惑,请随时留言,我们将乐意为您解答。感谢您的阅读!

原创声明

=======

作者: [ libin9iOak ]


本文为原创文章,版权归作者所有。未经许可,禁止转载、复制或引用。

作者保证信息真实可靠,但不对准确性和完整性承担责任。

未经许可,禁止商业用途。

如有疑问或建议,请联系作者。

感谢您的支持与尊重。

点击下方名片,加入IT技术核心学习团队。一起探索科技的未来,共同成长。


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
1月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
205 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
13天前
|
存储 IDE Linux
零基础保姆级教程!手把手教你免费玩转Linux CentOS安装+学习环境搭建(附避坑指南)
本文详细介绍了在VMware虚拟机中安装CentOS 6.8的全过程。首先,需确保已安装VMware并开启V-CPU虚拟化功能,可通过BIOS设置或使用LeoMoon CPU-V工具检测。接着,下载CentOS镜像文件,并在VMware中新建虚拟机,配置CPU、内存、硬盘等参数。最后,加载ISO镜像启动虚拟机,按照提示完成CentOS的安装,包括语言、键盘、存储方式、地区、密码设置及硬盘分区等步骤。安装完成后,以root用户登录即可进入系统桌面,开始学习Linux命令和操作。
67 12
零基础保姆级教程!手把手教你免费玩转Linux CentOS安装+学习环境搭建(附避坑指南)
|
2天前
|
安全 Linux 开发工具
【Linux】vim使用与配置教程
Vim是一款功能强大的文本编辑器,广泛应用于Linux环境,是开发者和系统管理员的必备工具。本文介绍了Vim的基本操作与简单配置,涵盖命令模式、插入模式和底行模式的使用方法,以及光标定位、复制粘贴、搜索替换等常用技巧。同时,文章还提供了实用的分屏操作和代码注释方法,并分享了通过`.vimrc`文件进行个性化配置(如显示行号、语法高亮、自动缩进等)的技巧,帮助用户提升文本编辑效率。掌握这些内容,能让Vim更好地服务于日常工作与开发需求。
25 3
|
1月前
|
Shell Linux
【linux】Shell脚本中basename和dirname的详细用法教程
本文详细介绍了Linux Shell脚本中 `basename`和 `dirname`命令的用法,包括去除路径信息、去除后缀、批量处理文件名和路径等。同时,通过文件备份和日志文件分离的实践应用,展示了这两个命令在实际脚本中的应用场景。希望本文能帮助您更好地理解和应用 `basename`和 `dirname`命令,提高Shell脚本编写的效率和灵活性。
105 32
|
1月前
|
Unix Linux C语言
【Linux】 Linux makefile 教程
本文详细介绍了 Linux 环境下 Makefile 的基本结构、语法和使用方法,并通过一个简单的 C++ 项目示例演示了 Makefile 的实际应用。Makefile 是一个强大而灵活的工具,通过合理配置,可以极大地简化项目的编译和管理过程,提高开发效率。希望本文能帮助您更好地理解和应用 Makefile,在实际项目中高效管理代码的编译和构建。
58 20
|
1月前
|
Unix Linux C语言
【Linux】 Linux makefile 教程
本文详细介绍了 Linux 环境下 Makefile 的基本结构、语法和使用方法,并通过一个简单的 C++ 项目示例演示了 Makefile 的实际应用。Makefile 是一个强大而灵活的工具,通过合理配置,可以极大地简化项目的编译和管理过程,提高开发效率。希望本文能帮助您更好地理解和应用 Makefile,在实际项目中高效管理代码的编译和构建。
62 16
|
2月前
|
Ubuntu Linux 网络安全
Linux磁盘挂接教程
Linux磁盘挂接教程
79 14
|
3月前
|
消息中间件 Java Kafka
【手把手教你Linux环境下快速搭建Kafka集群】内含脚本分发教程,实现一键部署多个Kafka节点
本文介绍了Kafka集群的搭建过程,涵盖从虚拟机安装到集群测试的详细步骤。首先规划了集群架构,包括三台Kafka Broker节点,并说明了分布式环境下的服务进程配置。接着,通过VMware导入模板机并克隆出三台虚拟机(kafka-broker1、kafka-broker2、kafka-broker3),分别设置IP地址和主机名。随后,依次安装JDK、ZooKeeper和Kafka,并配置相应的环境变量与启动脚本,确保各组件能正常运行。最后,通过编写启停脚本简化集群的操作流程,并对集群进行测试,验证其功能完整性。整个过程强调了自动化脚本的应用,提高了部署效率。
【手把手教你Linux环境下快速搭建Kafka集群】内含脚本分发教程,实现一键部署多个Kafka节点
|
3月前
|
人工智能 PyTorch 算法框架/工具
【AI系统】动手实现 PyTorch 微分
本文介绍了使用操作符重载(OO)编程方式实现的自动微分,特别是采用反向模式(Reverse Mode)的实现方法。文中详细解释了操作符重载的基本概念及其在自动微分中的应用,以及反向模式的工作原理。通过 Python 示例代码,演示了如何手动实现类似 PyTorch 中自动微分的核心机制,包括定义 `Variable` 类、`Tape` 结构以及实现基本的数学运算符重载。最后,通过一个具体的数学函数示例展示了如何利用上述机制计算梯度,帮助读者理解反向模式自动微分的全过程。
71 1
【AI系统】动手实现 PyTorch 微分
|
4月前
|
Linux Python
Linux 中某个目录中的文件数如何查看?这篇教程分分钟教会你!
在 Linux 系统中,了解目录下文件数量是常见的需求。本文介绍了四种方法:使用 `ls` 和 `wc` 组合、`find` 命令、`tree` 命令以及编程实现(如 Python)。每种方法都附有详细说明和示例,适合不同水平的用户学习和使用。掌握这些技巧,可以有效提升系统管理和日常使用的效率。
2428 6