【Python机器学习】实验05 机器学习应用实践-手动调参2

简介: 【Python机器学习】实验05 机器学习应用实践-手动调参2

1.8 如何选择超参数?比如多少轮迭代次数好?

#1 利用pandas显示数据
path = 'ex2data1.txt'
data = pd.read_csv(path, header=None, names=['Exam1', 'Exam2', 'Admitted'])
data.head()


Exam1 Exam2 Admitted
0 34.623660 78.024693 0
1 30.286711 43.894998 0
2 35.847409 72.902198 0
3 60.182599 86.308552 1
4 79.032736 75.344376 1
positive=data[data["Admitted"].isin([1])]
negative=data[data["Admitted"].isin([0])]
col_num=data.shape[1]
X=data.iloc[:,:col_num-1]
y=data.iloc[:,col_num-1]
X.insert(0,"ones",1)
X=X.values
y=y.values
# 1 划分数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=1)
X_train.shape,X_test.shape,X_val.shape 
((64, 3), (20, 3), (16, 3))
y_train.shape,y_test.shape,y_val.shape 
((64,), (20,), (16,))
# 2 修改梯度下降算法,为了不改变原有函数的签名,将训练集传给X,y
def grandient(X,y,X_val,y_val,iter_num,alpha):
    y=y.reshape((X.shape[0],1))
    w=np.zeros((X.shape[1],1))
    cost_lst=[]
    cost_val=[]
    lst_w=[]
    for i in range(iter_num):
        y_pred=h(X,w)-y
        temp=np.zeros((X.shape[1],1))
        for j in range(X.shape[1]):
            right=np.multiply(y_pred.ravel(),X[:,j])
            gradient=1/(X.shape[0])*(np.sum(right))
            temp[j,0]=w[j,0]-alpha*gradient
        w=temp
        cost_lst.append(cost(X,w,y.ravel()))
        cost_val.append(cost(X_val,w,y_val.ravel()))
        lst_w.append(w)
    return lst_w,cost_lst,cost_val
#调用梯度下降算法
iter_num,alpha=6000000,0.001
lst_w,cost_lst,cost_val=grandient(X_train,y_train,X_val,y_val,iter_num,alpha)
plt.plot(range(iter_num),cost_lst,"b-+")
plt.plot(range(iter_num),cost_val,"r-^")
plt.legend(["train","validate"])
plt.show()

#分析结果,看看在300万轮时的情况
print(cost_lst[500000],cost_val[500000])
0.24994786329203897 0.18926411883434127
#看看5万轮时测试误差
k=50000
w=lst_w[k]
print(cost_lst[k],cost_val[k])
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.45636730725628694 0.4573279187241135
0.7
#看看8万轮时测试误差
k=80000
w=lst_w[k]
print(cost_lst[k],cost_val[k])
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.40603054170171965 0.39424783821776516
0.75
#看看10万轮时测试误差
k=100000
print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.381898564816469 0.36355983465263897
0.8
#分析结果,看看在300万轮时的情况
k=3000000
print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.19780791870188535 0.11432680130573875
0.85
#分析结果,看看在500万轮时的情况
k=5000000
print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.19393055410160026 0.10754181199189947
0.85
#在500轮时的情况
k=5999999
print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.19319692059853838 0.10602762617262468
0.85

1.9 如何选择超参数?比如学习率设置多少好?

#1 设置一组学习率的初始值,然后绘制出在每个点初的验证误差,选择具有最小验证误差的学习率
alpha_lst=[0.1,0.08,0.03,0.01,0.008,0.003,0.001,0.0008,0.0003,0.00001]
def grandient(X,y,iter_num,alpha):
    y=y.reshape((X.shape[0],1))
    w=np.zeros((X.shape[1],1))
    cost_lst=[]
    for i in range(iter_num):
        y_pred=h(X,w)-y
        temp=np.zeros((X.shape[1],1))
        for j in range(X.shape[1]):
            right=np.multiply(y_pred.ravel(),X[:,j])
            gradient=1/(X.shape[0])*(np.sum(right))
            temp[j,0]=w[j,0]-alpha*gradient
        w=temp
        cost_lst.append(cost(X,w,y.ravel()))
    return w,cost_lst
lst_val=[]
iter_num=100000
lst_w=[]
for alpha in alpha_lst:
    w,cost_lst=grandient(X_train,y_train,iter_num,alpha)
    lst_w.append(w)
    lst_val.append(cost(X_val,w,y_val.ravel()))
lst_val
C:\Users\sanly\AppData\Local\Temp\ipykernel_8444\2221512341.py:5: RuntimeWarning: divide by zero encountered in log
  right=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())
C:\Users\sanly\AppData\Local\Temp\ipykernel_8444\2221512341.py:5: RuntimeWarning: invalid value encountered in multiply
  right=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())
[nan,
 nan,
 nan,
 1.302365681883988,
 0.9807991089640924,
 0.6863333276415668,
 0.3635612014705094,
 0.3942497801600069,
 0.5169328809489743,
 0.6448319202310255]
np.array(lst_val)
array([       nan,        nan,        nan, 1.30236568, 0.98079911,
       0.68633333, 0.3635612 , 0.39424978, 0.51693288, 0.64483192])
lst_val[3:]
[1.302365681883988,
 0.9807991089640924,
 0.6863333276415668,
 0.3635612014705094,
 0.3942497801600069,
 0.5169328809489743,
 0.6448319202310255]
np.argmin(np.array(lst_val[3:]))
3
#最好的学习率为
alpha_best=alpha_lst[3+np.argmin(np.array(lst_val[3:]))]
alpha_best
0.001
#可视化各学习率对应的验证误差
plt.scatter(alpha_lst[3:],lst_val[3:])
<matplotlib.collections.PathCollection at 0x1d1d48738b0>

#看看测试集的结果
#取出最好学习率对应的w
w_best=lst_w[3+np.argmin(np.array(lst_val[3:]))]
print(w_best)
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w_best).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
[[-4.72412058]
 [ 0.0504264 ]
 [ 0.0332232 ]]
0.8
#查看其他学习率对应的测试集准确率
for w in lst_w[3:]:
    y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
    print(np.sum(y_p_true==y_test)/X_test.shape[0])
0.75
0.75
0.6
0.8
0.75
0.6
0.55

1.10 如何选择超参数?试试调整l2正则化因子

实验:完成正则化因子的调参,下面给出了正则化因子lambda的范围,请参照学习率的调参,完成下面代码

# 1正则化的因子的范围可以比学习率略微设置的大一些
lambda_lst=[0.001,0.003,0.008,0.01,0.03,0.08,0.1,0.3,0.8,1,3,10]
# 2 代价函数构造
def cost_reg(X,w,y,lambd):
    #当X(m,n+1),y(m,),w(n+1,1)
    y_hat=sigmoid(X@w)
    right1=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())
    right2=(lambd/(2*X.shape[0]))*np.sum(np.power(w[1:,0],2))
    cost=-np.sum(right1)/X.shape[0]+right2
    return cost
def grandient_reg(X,w,y,iter_num,alpha,lambd):
    y=y.reshape((X.shape[0],1))
    w=np.zeros((X.shape[1],1))
    cost_lst=[] 
    for i in range(iter_num):
        y_pred=h(X,w)-y
        temp=np.zeros((X.shape[1],1))
        for j in range(0,X.shape[1]):
            if j==0:
                right_0=np.multiply(y_pred.ravel(),X[:,j])
                gradient_0=1/(X.shape[0])*(np.sum(right_0))
                temp[j,0]=w[j,0]-alpha*(gradient_0)
            else:
                right=np.multiply(y_pred.ravel(),X[:,j])
                reg=(lambd/X.shape[0])*w[j,0]
                gradient=1/(X.shape[0])*(np.sum(right))
                temp[j,0]=w[j,0]-alpha*(gradient+reg)          
        w=temp
        cost_lst.append(cost_reg(X,w,y,lambd))
    return w,cost_lst
# 3 调用梯度下降算法用l2正则化
iter_num,alpha=100000,0.001
cost_val=[]
cost_w=[]
for lambd in lambda_lst:
    w,cost_lst=grandient_reg(X_train,w,y_train,iter_num,alpha,lambd)
    cost_w.append(w)
    cost_val.append(cost_reg(X_val,w,y_val,lambd))
cost_val
[0.36356132605416125,
 0.36356157522133403,
 0.3635621981384864,
 0.36356244730503007,
 0.36356493896065706,
 0.3635711680214138,
 0.36357365961439897,
 0.3635985745598491,
 0.3636608540941533,
 0.36368576277656284,
 0.36393475122711266,
 0.36480480418120226]
# 4 查找具有最小验证误差的索引,从而求解出最优的lambda值
idex=np.argmin(np.array(cost_val))
print("具有最小验证误差的索引为{}".format(idex))
lamba_best=lambda_lst[idex]
lamba_best
具有最小验证误差的索引为0
0.001
# 5 计算最好的lambda对应的测试结果
w_best=cost_w[idex]
print(w_best)
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w_best).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
[[-4.7241201 ]
 [ 0.05042639]
 [ 0.0332232 ]]
0.8


目录
相关文章
|
6天前
|
机器学习/深度学习 数据采集 自然语言处理
构建高效机器学习模型的策略与实践
【4月更文挑战第30天】 在数据驱动的时代,机器学习(ML)作为一项核心技术,其应用范围和影响力日益扩大。然而,构建一个既高效又准确的机器学习模型并非易事。本文将探讨一系列实用的策略和技术,用于优化机器学习的工作流程,包括数据预处理、特征工程、模型选择、超参数调优以及模型评估等方面。通过这些策略,读者可以提升模型的性能,确保在实际应用中达到预期的准确度和效率。
|
23小时前
|
测试技术 Python
Python模块化方式编程实践
Python模块化编程提升代码质量,包括:定义专注单一任务的模块;使用`import`导入模块;封装函数和类,明确命名便于重用;避免全局变量降低耦合;使用文档字符串增强可读性;为每个模块写单元测试确保正确性;重用模块作为库;定期维护更新以适应Python新版本。遵循这些实践,可提高代码可读性、重用性和可维护性。
13 2
|
5天前
|
机器学习/深度学习 人工智能 算法
【Python 机器学习专栏】强化学习在游戏 AI 中的实践
【4月更文挑战第30天】强化学习在游戏AI中展现巨大潜力,通过与环境交互和奖励信号学习最优策略。适应性强,能自主探索,挖掘出惊人策略。应用包括策略、动作和竞速游戏,如AlphaGo。Python是实现强化学习的常用工具。尽管面临训练时间长和环境复杂性等挑战,但未来强化学习将与其他技术融合,推动游戏AI发展,创造更智能的游戏体验。
|
6天前
|
机器学习/深度学习 运维 算法
【Python机器学习专栏】异常检测算法在Python中的实践
【4月更文挑战第30天】本文介绍了异常检测的重要性和在不同领域的应用,如欺诈检测和网络安全。文章概述了四种常见异常检测算法:基于统计、距离、密度和模型的方法。在Python实践中,使用scikit-learn库展示了如何实现这些算法,包括正态分布拟合、K-means聚类、局部异常因子(LOF)和孤立森林(Isolation Forest)。通过计算概率密度、距离、LOF值和数据点的平均路径长度来识别异常值。
|
6天前
|
机器学习/深度学习 数据采集 算法
【Python机器学习专栏】支持向量机(SVM)在Python中的实践
【4月更文挑战第30天】SVM是一种高效的监督学习算法,适用于分类和回归,尤其擅长处理高维和非线性问题。通过寻找最大边际超平面来分隔数据,SVM具有高效性、鲁棒性、灵活性和稀疏性等特点。
|
6天前
|
机器学习/深度学习 数据采集 算法
【Python机器学习专栏】自动化特征选择与优化的实践
【4月更文挑战第30天】特征选择在机器学习中至关重要,能降低模型复杂度,提高泛化能力和避免过拟合。本文介绍了自动化特征选择的三种方法:过滤法(如SelectKBest)、包装法(如RFE)和嵌入法(如随机森林)。通过结合这些方法,可实现特征优化,包括数据预处理、初步筛选、模型训练与评估、特征优化和结果验证。自动化特征选择能提升模型性能,适应不同数据集和任务需求,为机器学习项目提供坚实基础。
|
6天前
|
机器学习/深度学习 PyTorch TensorFlow
【Python机器学习专栏】Python环境下的机器学习库概览
【4月更文挑战第30天】本文介绍了Python在机器学习中的重要性及几个主流库:NumPy用于数值计算,支持高效的数组操作;Pandas提供数据帧和序列,便利数据处理与分析;Matplotlib是数据可视化的有力工具;Scikit-learn包含多种机器学习算法,易于使用;TensorFlow和Keras是深度学习框架,Keras适合初学者;PyTorch则以其动态计算图和调试工具受到青睐。这些库助力机器学习研究与实践。
|
6天前
|
机器学习/深度学习 Cloud Native 持续交付
构建高效机器学习模型的策略与实践构建未来:云原生技术在企业数字化转型中的关键作用
【4月更文挑战第30天】 在机器学习领域,构建一个高效的模型不仅需要深厚的理论基础,还需结合先进的技术手段和策略。本文将探讨一系列提升模型性能的方法,包括数据预处理、特征选择、模型调参以及集成学习等。通过具体案例分析,揭示这些方法如何在实际问题中得以应用,并讨论它们对模型性能的影响。文中还将涉及最新的研究进展,为读者提供前瞻性的指导意义。 【4月更文挑战第30天】随着企业加速其数字化转型之旅,云原生技术已成为推动创新和灵活性的核心。本文深入探讨了云原生架构的原则,包括微服务、容器化、持续集成/持续部署(CI/CD)、以及声明式APIs。分析了这些技术如何共同促进可伸缩性、敏捷性和容错性,同时
|
6天前
|
机器学习/深度学习 数据采集 自然语言处理
构建高效机器学习模型的策略与实践
【4月更文挑战第30天】 在机器学习领域,构建一个高效的模型不仅需要深厚的理论基础,还需结合先进的技术手段和策略。本文将探讨一系列提升模型性能的方法,包括数据预处理、特征选择、模型调参以及集成学习等。通过具体案例分析,揭示这些方法如何在实际问题中得以应用,并讨论它们对模型性能的影响。文中还将涉及最新的研究进展,为读者提供前瞻性的指导意义。
|
6天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型的策略与实践
【4月更文挑战第30天】本文针对机器学习领域内模型构建的核心问题,提出了一系列创新性策略。首先,通过分析数据预处理的重要性,探讨了特征工程对模型性能的影响;其次,介绍了几种先进的算法选择方法,以及如何根据具体问题进行调优;最后,本文还讨论了模型评估和验证的关键技术,确保所构建模型的泛化能力和实用性。这些内容构成了一个全面的方法论框架,旨在指导读者构建出既高效又稳定的机器学习模型。

热门文章

最新文章