【Python机器学习】实验05 机器学习应用实践-手动调参2

简介: 【Python机器学习】实验05 机器学习应用实践-手动调参2

1.8 如何选择超参数?比如多少轮迭代次数好?

#1 利用pandas显示数据
path = 'ex2data1.txt'
data = pd.read_csv(path, header=None, names=['Exam1', 'Exam2', 'Admitted'])
data.head()


Exam1 Exam2 Admitted
0 34.623660 78.024693 0
1 30.286711 43.894998 0
2 35.847409 72.902198 0
3 60.182599 86.308552 1
4 79.032736 75.344376 1
positive=data[data["Admitted"].isin([1])]
negative=data[data["Admitted"].isin([0])]
col_num=data.shape[1]
X=data.iloc[:,:col_num-1]
y=data.iloc[:,col_num-1]
X.insert(0,"ones",1)
X=X.values
y=y.values
# 1 划分数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=1)
X_train.shape,X_test.shape,X_val.shape 
((64, 3), (20, 3), (16, 3))
y_train.shape,y_test.shape,y_val.shape 
((64,), (20,), (16,))
# 2 修改梯度下降算法,为了不改变原有函数的签名,将训练集传给X,y
def grandient(X,y,X_val,y_val,iter_num,alpha):
    y=y.reshape((X.shape[0],1))
    w=np.zeros((X.shape[1],1))
    cost_lst=[]
    cost_val=[]
    lst_w=[]
    for i in range(iter_num):
        y_pred=h(X,w)-y
        temp=np.zeros((X.shape[1],1))
        for j in range(X.shape[1]):
            right=np.multiply(y_pred.ravel(),X[:,j])
            gradient=1/(X.shape[0])*(np.sum(right))
            temp[j,0]=w[j,0]-alpha*gradient
        w=temp
        cost_lst.append(cost(X,w,y.ravel()))
        cost_val.append(cost(X_val,w,y_val.ravel()))
        lst_w.append(w)
    return lst_w,cost_lst,cost_val
#调用梯度下降算法
iter_num,alpha=6000000,0.001
lst_w,cost_lst,cost_val=grandient(X_train,y_train,X_val,y_val,iter_num,alpha)
plt.plot(range(iter_num),cost_lst,"b-+")
plt.plot(range(iter_num),cost_val,"r-^")
plt.legend(["train","validate"])
plt.show()

#分析结果,看看在300万轮时的情况
print(cost_lst[500000],cost_val[500000])
0.24994786329203897 0.18926411883434127
#看看5万轮时测试误差
k=50000
w=lst_w[k]
print(cost_lst[k],cost_val[k])
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.45636730725628694 0.4573279187241135
0.7
#看看8万轮时测试误差
k=80000
w=lst_w[k]
print(cost_lst[k],cost_val[k])
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.40603054170171965 0.39424783821776516
0.75
#看看10万轮时测试误差
k=100000
print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.381898564816469 0.36355983465263897
0.8
#分析结果,看看在300万轮时的情况
k=3000000
print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.19780791870188535 0.11432680130573875
0.85
#分析结果,看看在500万轮时的情况
k=5000000
print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.19393055410160026 0.10754181199189947
0.85
#在500轮时的情况
k=5999999
print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.19319692059853838 0.10602762617262468
0.85

1.9 如何选择超参数?比如学习率设置多少好?

#1 设置一组学习率的初始值,然后绘制出在每个点初的验证误差,选择具有最小验证误差的学习率
alpha_lst=[0.1,0.08,0.03,0.01,0.008,0.003,0.001,0.0008,0.0003,0.00001]
def grandient(X,y,iter_num,alpha):
    y=y.reshape((X.shape[0],1))
    w=np.zeros((X.shape[1],1))
    cost_lst=[]
    for i in range(iter_num):
        y_pred=h(X,w)-y
        temp=np.zeros((X.shape[1],1))
        for j in range(X.shape[1]):
            right=np.multiply(y_pred.ravel(),X[:,j])
            gradient=1/(X.shape[0])*(np.sum(right))
            temp[j,0]=w[j,0]-alpha*gradient
        w=temp
        cost_lst.append(cost(X,w,y.ravel()))
    return w,cost_lst
lst_val=[]
iter_num=100000
lst_w=[]
for alpha in alpha_lst:
    w,cost_lst=grandient(X_train,y_train,iter_num,alpha)
    lst_w.append(w)
    lst_val.append(cost(X_val,w,y_val.ravel()))
lst_val
C:\Users\sanly\AppData\Local\Temp\ipykernel_8444\2221512341.py:5: RuntimeWarning: divide by zero encountered in log
  right=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())
C:\Users\sanly\AppData\Local\Temp\ipykernel_8444\2221512341.py:5: RuntimeWarning: invalid value encountered in multiply
  right=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())
[nan,
 nan,
 nan,
 1.302365681883988,
 0.9807991089640924,
 0.6863333276415668,
 0.3635612014705094,
 0.3942497801600069,
 0.5169328809489743,
 0.6448319202310255]
np.array(lst_val)
array([       nan,        nan,        nan, 1.30236568, 0.98079911,
       0.68633333, 0.3635612 , 0.39424978, 0.51693288, 0.64483192])
lst_val[3:]
[1.302365681883988,
 0.9807991089640924,
 0.6863333276415668,
 0.3635612014705094,
 0.3942497801600069,
 0.5169328809489743,
 0.6448319202310255]
np.argmin(np.array(lst_val[3:]))
3
#最好的学习率为
alpha_best=alpha_lst[3+np.argmin(np.array(lst_val[3:]))]
alpha_best
0.001
#可视化各学习率对应的验证误差
plt.scatter(alpha_lst[3:],lst_val[3:])
<matplotlib.collections.PathCollection at 0x1d1d48738b0>

#看看测试集的结果
#取出最好学习率对应的w
w_best=lst_w[3+np.argmin(np.array(lst_val[3:]))]
print(w_best)
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w_best).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
[[-4.72412058]
 [ 0.0504264 ]
 [ 0.0332232 ]]
0.8
#查看其他学习率对应的测试集准确率
for w in lst_w[3:]:
    y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
    print(np.sum(y_p_true==y_test)/X_test.shape[0])
0.75
0.75
0.6
0.8
0.75
0.6
0.55

1.10 如何选择超参数?试试调整l2正则化因子

实验:完成正则化因子的调参,下面给出了正则化因子lambda的范围,请参照学习率的调参,完成下面代码

# 1正则化的因子的范围可以比学习率略微设置的大一些
lambda_lst=[0.001,0.003,0.008,0.01,0.03,0.08,0.1,0.3,0.8,1,3,10]
# 2 代价函数构造
def cost_reg(X,w,y,lambd):
    #当X(m,n+1),y(m,),w(n+1,1)
    y_hat=sigmoid(X@w)
    right1=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())
    right2=(lambd/(2*X.shape[0]))*np.sum(np.power(w[1:,0],2))
    cost=-np.sum(right1)/X.shape[0]+right2
    return cost
def grandient_reg(X,w,y,iter_num,alpha,lambd):
    y=y.reshape((X.shape[0],1))
    w=np.zeros((X.shape[1],1))
    cost_lst=[] 
    for i in range(iter_num):
        y_pred=h(X,w)-y
        temp=np.zeros((X.shape[1],1))
        for j in range(0,X.shape[1]):
            if j==0:
                right_0=np.multiply(y_pred.ravel(),X[:,j])
                gradient_0=1/(X.shape[0])*(np.sum(right_0))
                temp[j,0]=w[j,0]-alpha*(gradient_0)
            else:
                right=np.multiply(y_pred.ravel(),X[:,j])
                reg=(lambd/X.shape[0])*w[j,0]
                gradient=1/(X.shape[0])*(np.sum(right))
                temp[j,0]=w[j,0]-alpha*(gradient+reg)          
        w=temp
        cost_lst.append(cost_reg(X,w,y,lambd))
    return w,cost_lst
# 3 调用梯度下降算法用l2正则化
iter_num,alpha=100000,0.001
cost_val=[]
cost_w=[]
for lambd in lambda_lst:
    w,cost_lst=grandient_reg(X_train,w,y_train,iter_num,alpha,lambd)
    cost_w.append(w)
    cost_val.append(cost_reg(X_val,w,y_val,lambd))
cost_val
[0.36356132605416125,
 0.36356157522133403,
 0.3635621981384864,
 0.36356244730503007,
 0.36356493896065706,
 0.3635711680214138,
 0.36357365961439897,
 0.3635985745598491,
 0.3636608540941533,
 0.36368576277656284,
 0.36393475122711266,
 0.36480480418120226]
# 4 查找具有最小验证误差的索引,从而求解出最优的lambda值
idex=np.argmin(np.array(cost_val))
print("具有最小验证误差的索引为{}".format(idex))
lamba_best=lambda_lst[idex]
lamba_best
具有最小验证误差的索引为0
0.001
# 5 计算最好的lambda对应的测试结果
w_best=cost_w[idex]
print(w_best)
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w_best).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
[[-4.7241201 ]
 [ 0.05042639]
 [ 0.0332232 ]]
0.8


目录
相关文章
|
2月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
128 0
|
3月前
|
数据采集 监控 Java
Python 函数式编程的执行效率:实际应用中的权衡
Python 函数式编程的执行效率:实际应用中的权衡
226 102
|
2月前
|
机器学习/深度学习 数据采集 算法
量子机器学习入门:三种数据编码方法对比与应用
在量子机器学习中,数据编码方式决定了量子模型如何理解和处理信息。本文详解角度编码、振幅编码与基础编码三种方法,分析其原理、实现及适用场景,帮助读者选择最适合的编码策略,提升量子模型性能。
173 8
|
2月前
|
机器学习/深度学习 算法 安全
【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)
【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)
126 6
|
2月前
|
设计模式 缓存 运维
Python装饰器实战场景解析:从原理到应用的10个经典案例
Python装饰器是函数式编程的精华,通过10个实战场景,从日志记录、权限验证到插件系统,全面解析其应用。掌握装饰器,让代码更优雅、灵活,提升开发效率。
140 0
|
3月前
|
数据采集 存储 数据可视化
Python网络爬虫在环境保护中的应用:污染源监测数据抓取与分析
在环保领域,数据是决策基础,但分散在多个平台,获取困难。Python网络爬虫技术灵活高效,可自动化抓取空气质量、水质、污染源等数据,实现多平台整合、实时更新、结构化存储与异常预警。本文详解爬虫实战应用,涵盖技术选型、代码实现、反爬策略与数据分析,助力环保数据高效利用。
178 0
|
3月前
|
存储 程序员 数据处理
Python列表基础操作全解析:从创建到灵活应用
本文深入浅出地讲解了Python列表的各类操作,从创建、增删改查到遍历与性能优化,内容详实且贴近实战,适合初学者快速掌握这一核心数据结构。
257 0
|
数据采集 数据可视化 大数据
Python在大数据处理中的应用实践
Python在大数据处理中扮演重要角色,借助`requests`和`BeautifulSoup`抓取数据,`pandas`进行清洗预处理,面对大规模数据时,`Dask`提供分布式处理能力,而`matplotlib`和`seaborn`则助力数据可视化。通过这些工具,数据工程师和科学家能高效地管理、分析和展示海量数据。
612 4
|
12月前
|
设计模式 开发者 Python
Python编程中的设计模式应用与实践感悟####
本文作为一篇技术性文章,旨在深入探讨Python编程中设计模式的应用价值与实践心得。在快速迭代的软件开发领域,设计模式如同导航灯塔,指引开发者构建高效、可维护的软件架构。本文将通过具体案例,展现设计模式如何在实际项目中解决复杂问题,提升代码质量,并分享个人在实践过程中的体会与感悟。 ####
|
12月前
|
机器学习/深度学习 数据采集 数据可视化
Python在数据科学中的应用:从入门到实践
本文旨在为读者提供一个Python在数据科学领域应用的全面概览。我们将从Python的基础语法开始,逐步深入到数据处理、分析和可视化的高级技术。文章不仅涵盖了Python中常用的数据科学库,如NumPy、Pandas和Matplotlib,还探讨了机器学习库Scikit-learn的使用。通过实际案例分析,本文将展示如何利用Python进行数据清洗、特征工程、模型训练和结果评估。此外,我们还将探讨Python在大数据处理中的应用,以及如何通过集成学习和深度学习技术来提升数据分析的准确性和效率。

热门文章

最新文章

推荐镜像

更多
下一篇
开通oss服务