【Python机器学习】实验04 多分类实践(基于逻辑回归)1

简介: 【Python机器学习】实验04 多分类实践(基于逻辑回归)1

多分类以及机器学习实践

如何对多个类别进行分类

Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据样本,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。

iris以鸢尾花的特征作为数据来源,常用在分类操作中。该数据集由3种不同类型的鸢尾花的各50个样本数据构成。其中的一个种类与另外两个种类是线性可分离的,后两个种类是非线性可分离的。

该数据集包含了4个属性:

Sepal.Length(花萼长度),单位是cm;

Sepal.Width(花萼宽度),单位是cm;

Petal.Length(花瓣长度),单位是cm;

Petal.Width(花瓣宽度),单位是cm;

种类:Iris Setosa(山鸢尾)、Iris Versicolour(杂色鸢尾),以及Iris Virginica(维吉尼亚鸢尾)。

1.1 数据的预处理

import sklearn.datasets as datasets
import pandas as pd
import numpy as np
data=datasets.load_iris()
data
{'data': array([[5.1, 3.5, 1.4, 0.2],
        [4.9, 3. , 1.4, 0.2],
        [4.7, 3.2, 1.3, 0.2],
        [4.6, 3.1, 1.5, 0.2],
        [5. , 3.6, 1.4, 0.2],
        [5.4, 3.9, 1.7, 0.4],
        [4.6, 3.4, 1.4, 0.3],
        [5. , 3.4, 1.5, 0.2],
        [4.4, 2.9, 1.4, 0.2],
        [4.9, 3.1, 1.5, 0.1],
        [5.4, 3.7, 1.5, 0.2],
        [4.8, 3.4, 1.6, 0.2],
        [4.8, 3. , 1.4, 0.1],
        [4.3, 3. , 1.1, 0.1],
        [5.8, 4. , 1.2, 0.2],
        [5.7, 4.4, 1.5, 0.4],
        [5.4, 3.9, 1.3, 0.4],
        [5.1, 3.5, 1.4, 0.3],
        [5.7, 3.8, 1.7, 0.3],
        [5.1, 3.8, 1.5, 0.3],
        [5.4, 3.4, 1.7, 0.2],
        [5.1, 3.7, 1.5, 0.4],
        [4.6, 3.6, 1. , 0.2],
        [5.1, 3.3, 1.7, 0.5],
        [4.8, 3.4, 1.9, 0.2],
        [5. , 3. , 1.6, 0.2],
        [5. , 3.4, 1.6, 0.4],
        [5.2, 3.5, 1.5, 0.2],
        [5.2, 3.4, 1.4, 0.2],
        [4.7, 3.2, 1.6, 0.2],
        [4.8, 3.1, 1.6, 0.2],
        [5.4, 3.4, 1.5, 0.4],
        [5.2, 4.1, 1.5, 0.1],
        [5.5, 4.2, 1.4, 0.2],
        [4.9, 3.1, 1.5, 0.2],
        [5. , 3.2, 1.2, 0.2],
        [5.5, 3.5, 1.3, 0.2],
        [4.9, 3.6, 1.4, 0.1],
        [4.4, 3. , 1.3, 0.2],
        [5.1, 3.4, 1.5, 0.2],
        [5. , 3.5, 1.3, 0.3],
        [4.5, 2.3, 1.3, 0.3],
        [4.4, 3.2, 1.3, 0.2],
        [5. , 3.5, 1.6, 0.6],
        [5.1, 3.8, 1.9, 0.4],
        [4.8, 3. , 1.4, 0.3],
        [5.1, 3.8, 1.6, 0.2],
        [4.6, 3.2, 1.4, 0.2],
        [5.3, 3.7, 1.5, 0.2],
        [5. , 3.3, 1.4, 0.2],
        [7. , 3.2, 4.7, 1.4],
        [6.4, 3.2, 4.5, 1.5],
        [6.9, 3.1, 4.9, 1.5],
        [5.5, 2.3, 4. , 1.3],
        [6.5, 2.8, 4.6, 1.5],
        [5.7, 2.8, 4.5, 1.3],
        [6.3, 3.3, 4.7, 1.6],
        [4.9, 2.4, 3.3, 1. ],
        [6.6, 2.9, 4.6, 1.3],
        [5.2, 2.7, 3.9, 1.4],
        [5. , 2. , 3.5, 1. ],
        [5.9, 3. , 4.2, 1.5],
        [6. , 2.2, 4. , 1. ],
        [6.1, 2.9, 4.7, 1.4],
        [5.6, 2.9, 3.6, 1.3],
        [6.7, 3.1, 4.4, 1.4],
        [5.6, 3. , 4.5, 1.5],
        [5.8, 2.7, 4.1, 1. ],
        [6.2, 2.2, 4.5, 1.5],
        [5.6, 2.5, 3.9, 1.1],
        [5.9, 3.2, 4.8, 1.8],
        [6.1, 2.8, 4. , 1.3],
        [6.3, 2.5, 4.9, 1.5],
        [6.1, 2.8, 4.7, 1.2],
        [6.4, 2.9, 4.3, 1.3],
        [6.6, 3. , 4.4, 1.4],
        [6.8, 2.8, 4.8, 1.4],
        [6.7, 3. , 5. , 1.7],
        [6. , 2.9, 4.5, 1.5],
        [5.7, 2.6, 3.5, 1. ],
        [5.5, 2.4, 3.8, 1.1],
        [5.5, 2.4, 3.7, 1. ],
        [5.8, 2.7, 3.9, 1.2],
        [6. , 2.7, 5.1, 1.6],
        [5.4, 3. , 4.5, 1.5],
        [6. , 3.4, 4.5, 1.6],
        [6.7, 3.1, 4.7, 1.5],
        [6.3, 2.3, 4.4, 1.3],
        [5.6, 3. , 4.1, 1.3],
        [5.5, 2.5, 4. , 1.3],
        [5.5, 2.6, 4.4, 1.2],
        [6.1, 3. , 4.6, 1.4],
        [5.8, 2.6, 4. , 1.2],
        [5. , 2.3, 3.3, 1. ],
        [5.6, 2.7, 4.2, 1.3],
        [5.7, 3. , 4.2, 1.2],
        [5.7, 2.9, 4.2, 1.3],
        [6.2, 2.9, 4.3, 1.3],
        [5.1, 2.5, 3. , 1.1],
        [5.7, 2.8, 4.1, 1.3],
        [6.3, 3.3, 6. , 2.5],
        [5.8, 2.7, 5.1, 1.9],
        [7.1, 3. , 5.9, 2.1],
        [6.3, 2.9, 5.6, 1.8],
        [6.5, 3. , 5.8, 2.2],
        [7.6, 3. , 6.6, 2.1],
        [4.9, 2.5, 4.5, 1.7],
        [7.3, 2.9, 6.3, 1.8],
        [6.7, 2.5, 5.8, 1.8],
        [7.2, 3.6, 6.1, 2.5],
        [6.5, 3.2, 5.1, 2. ],
        [6.4, 2.7, 5.3, 1.9],
        [6.8, 3. , 5.5, 2.1],
        [5.7, 2.5, 5. , 2. ],
        [5.8, 2.8, 5.1, 2.4],
        [6.4, 3.2, 5.3, 2.3],
        [6.5, 3. , 5.5, 1.8],
        [7.7, 3.8, 6.7, 2.2],
        [7.7, 2.6, 6.9, 2.3],
        [6. , 2.2, 5. , 1.5],
        [6.9, 3.2, 5.7, 2.3],
        [5.6, 2.8, 4.9, 2. ],
        [7.7, 2.8, 6.7, 2. ],
        [6.3, 2.7, 4.9, 1.8],
        [6.7, 3.3, 5.7, 2.1],
        [7.2, 3.2, 6. , 1.8],
        [6.2, 2.8, 4.8, 1.8],
        [6.1, 3. , 4.9, 1.8],
        [6.4, 2.8, 5.6, 2.1],
        [7.2, 3. , 5.8, 1.6],
        [7.4, 2.8, 6.1, 1.9],
        [7.9, 3.8, 6.4, 2. ],
        [6.4, 2.8, 5.6, 2.2],
        [6.3, 2.8, 5.1, 1.5],
        [6.1, 2.6, 5.6, 1.4],
        [7.7, 3. , 6.1, 2.3],
        [6.3, 3.4, 5.6, 2.4],
        [6.4, 3.1, 5.5, 1.8],
        [6. , 3. , 4.8, 1.8],
        [6.9, 3.1, 5.4, 2.1],
        [6.7, 3.1, 5.6, 2.4],
        [6.9, 3.1, 5.1, 2.3],
        [5.8, 2.7, 5.1, 1.9],
        [6.8, 3.2, 5.9, 2.3],
        [6.7, 3.3, 5.7, 2.5],
        [6.7, 3. , 5.2, 2.3],
        [6.3, 2.5, 5. , 1.9],
        [6.5, 3. , 5.2, 2. ],
        [6.2, 3.4, 5.4, 2.3],
        [5.9, 3. , 5.1, 1.8]]),
 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
 'frame': None,
 'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='<U10'),
 'DESCR': '.. _iris_dataset:\n\nIris plants dataset\n--------------------\n\n**Data Set Characteristics:**\n\n    :Number of Instances: 150 (50 in each of three classes)\n    :Number of Attributes: 4 numeric, predictive attributes and the class\n    :Attribute Information:\n        - sepal length in cm\n        - sepal width in cm\n        - petal length in cm\n        - petal width in cm\n        - class:\n                - Iris-Setosa\n                - Iris-Versicolour\n                - Iris-Virginica\n                \n    :Summary Statistics:\n\n    ============== ==== ==== ======= ===== ====================\n                    Min  Max   Mean    SD   Class Correlation\n    ============== ==== ==== ======= ===== ====================\n    sepal length:   4.3  7.9   5.84   0.83    0.7826\n    sepal width:    2.0  4.4   3.05   0.43   -0.4194\n    petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)\n    petal width:    0.1  2.5   1.20   0.76    0.9565  (high!)\n    ============== ==== ==== ======= ===== ====================\n\n    :Missing Attribute Values: None\n    :Class Distribution: 33.3% for each of 3 classes.\n    :Creator: R.A. Fisher\n    :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n    :Date: July, 1988\n\nThe famous Iris database, first used by Sir R.A. Fisher. The dataset is taken\nfrom Fisher\'s paper. Note that it\'s the same as in R, but not as in the UCI\nMachine Learning Repository, which has two wrong data points.\n\nThis is perhaps the best known database to be found in the\npattern recognition literature.  Fisher\'s paper is a classic in the field and\nis referenced frequently to this day.  (See Duda & Hart, for example.)  The\ndata set contains 3 classes of 50 instances each, where each class refers to a\ntype of iris plant.  One class is linearly separable from the other 2; the\nlatter are NOT linearly separable from each other.\n\n.. topic:: References\n\n   - Fisher, R.A. "The use of multiple measurements in taxonomic problems"\n     Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to\n     Mathematical Statistics" (John Wiley, NY, 1950).\n   - Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.\n     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.\n   - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n     Structure and Classification Rule for Recognition in Partially Exposed\n     Environments".  IEEE Transactions on Pattern Analysis and Machine\n     Intelligence, Vol. PAMI-2, No. 1, 67-71.\n   - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions\n     on Information Theory, May 1972, 431-433.\n   - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II\n     conceptual clustering system finds 3 classes in the data.\n   - Many, many more ...',
 'feature_names': ['sepal length (cm)',
  'sepal width (cm)',
  'petal length (cm)',
  'petal width (cm)'],
 'filename': 'iris.csv',
 'data_module': 'sklearn.datasets.data'}
data_x=data["data"]
data_y=data["target"]
data_x.shape,data_y.shape
((150, 4), (150,))
data_y=data_y.reshape([len(data_y),1])
data_y
array([[0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2]])
#法1 ,用拼接的方法
data=np.hstack([data_x,data_y])
#法二: 用插入的方法
np.insert(data_x,data_x.shape[1],data_y,axis=1)
array([[5.1, 3.5, 1.4, ..., 2. , 2. , 2. ],
       [4.9, 3. , 1.4, ..., 2. , 2. , 2. ],
       [4.7, 3.2, 1.3, ..., 2. , 2. , 2. ],
       ...,
       [6.5, 3. , 5.2, ..., 2. , 2. , 2. ],
       [6.2, 3.4, 5.4, ..., 2. , 2. , 2. ],
       [5.9, 3. , 5.1, ..., 2. , 2. , 2. ]])
data=pd.DataFrame(data,columns=["F1","F2","F3","F4","target"])
data
F1 F2 F3 F4 target
0 5.1 3.5 1.4 0.2 0.0
1 4.9 3.0 1.4 0.2 0.0
2 4.7 3.2 1.3 0.2 0.0
3 4.6 3.1 1.5 0.2 0.0
4 5.0 3.6 1.4 0.2 0.0
... ... ... ... ... ...
145 6.7 3.0 5.2 2.3 2.0
146 6.3 2.5 5.0 1.9 2.0
147 6.5 3.0 5.2 2.0 2.0
148 6.2 3.4 5.4 2.3 2.0
149 5.9 3.0 5.1 1.8 2.0

150 rows × 5 columns

data.insert(0,"ones",1)
data

ones
F1 F2 F3 F4 target
0 1 5.1 3.5 1.4 0.2 0.0
1 1 4.9 3.0 1.4 0.2 0.0
2 1 4.7 3.2 1.3 0.2 0.0
3 1 4.6 3.1 1.5 0.2 0.0
4 1 5.0 3.6 1.4 0.2 0.0
... ... ... ... ... ... ...
145 1 6.7 3.0 5.2 2.3 2.0
146 1 6.3 2.5 5.0 1.9 2.0
147 1 6.5 3.0 5.2 2.0 2.0
148 1 6.2 3.4 5.4 2.3 2.0
149 1 5.9 3.0 5.1 1.8 2.0

150 rows × 6 columns

data["target"]=data["target"].astype("int32")
data
ones F1 F2 F3 F4 target
0 1 5.1 3.5 1.4 0.2 0
1 1 4.9 3.0 1.4 0.2 0
2 1 4.7 3.2 1.3 0.2 0
3 1 4.6 3.1 1.5 0.2 0
4 1 5.0 3.6 1.4 0.2 0
... ... ... ... ... ... ...
145 1 6.7 3.0 5.2 2.3 2
146 1 6.3 2.5 5.0 1.9 2
147 1 6.5 3.0 5.2 2.0 2
148 1 6.2 3.4 5.4 2.3 2
149 1 5.9 3.0 5.1 1.8 2

150 rows × 6 columns

1.2 训练数据的准备

data_x
array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3. , 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2],
       [5. , 3.6, 1.4, 0.2],
       [5.4, 3.9, 1.7, 0.4],
       [4.6, 3.4, 1.4, 0.3],
       [5. , 3.4, 1.5, 0.2],
       [4.4, 2.9, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5.4, 3.7, 1.5, 0.2],
       [4.8, 3.4, 1.6, 0.2],
       [4.8, 3. , 1.4, 0.1],
       [4.3, 3. , 1.1, 0.1],
       [5.8, 4. , 1.2, 0.2],
       [5.7, 4.4, 1.5, 0.4],
       [5.4, 3.9, 1.3, 0.4],
       [5.1, 3.5, 1.4, 0.3],
       [5.7, 3.8, 1.7, 0.3],
       [5.1, 3.8, 1.5, 0.3],
       [5.4, 3.4, 1.7, 0.2],
       [5.1, 3.7, 1.5, 0.4],
       [4.6, 3.6, 1. , 0.2],
       [5.1, 3.3, 1.7, 0.5],
       [4.8, 3.4, 1.9, 0.2],
       [5. , 3. , 1.6, 0.2],
       [5. , 3.4, 1.6, 0.4],
       [5.2, 3.5, 1.5, 0.2],
       [5.2, 3.4, 1.4, 0.2],
       [4.7, 3.2, 1.6, 0.2],
       [4.8, 3.1, 1.6, 0.2],
       [5.4, 3.4, 1.5, 0.4],
       [5.2, 4.1, 1.5, 0.1],
       [5.5, 4.2, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.2],
       [5. , 3.2, 1.2, 0.2],
       [5.5, 3.5, 1.3, 0.2],
       [4.9, 3.6, 1.4, 0.1],
       [4.4, 3. , 1.3, 0.2],
       [5.1, 3.4, 1.5, 0.2],
       [5. , 3.5, 1.3, 0.3],
       [4.5, 2.3, 1.3, 0.3],
       [4.4, 3.2, 1.3, 0.2],
       [5. , 3.5, 1.6, 0.6],
       [5.1, 3.8, 1.9, 0.4],
       [4.8, 3. , 1.4, 0.3],
       [5.1, 3.8, 1.6, 0.2],
       [4.6, 3.2, 1.4, 0.2],
       [5.3, 3.7, 1.5, 0.2],
       [5. , 3.3, 1.4, 0.2],
       [7. , 3.2, 4.7, 1.4],
       [6.4, 3.2, 4.5, 1.5],
       [6.9, 3.1, 4.9, 1.5],
       [5.5, 2.3, 4. , 1.3],
       [6.5, 2.8, 4.6, 1.5],
       [5.7, 2.8, 4.5, 1.3],
       [6.3, 3.3, 4.7, 1.6],
       [4.9, 2.4, 3.3, 1. ],
       [6.6, 2.9, 4.6, 1.3],
       [5.2, 2.7, 3.9, 1.4],
       [5. , 2. , 3.5, 1. ],
       [5.9, 3. , 4.2, 1.5],
       [6. , 2.2, 4. , 1. ],
       [6.1, 2.9, 4.7, 1.4],
       [5.6, 2.9, 3.6, 1.3],
       [6.7, 3.1, 4.4, 1.4],
       [5.6, 3. , 4.5, 1.5],
       [5.8, 2.7, 4.1, 1. ],
       [6.2, 2.2, 4.5, 1.5],
       [5.6, 2.5, 3.9, 1.1],
       [5.9, 3.2, 4.8, 1.8],
       [6.1, 2.8, 4. , 1.3],
       [6.3, 2.5, 4.9, 1.5],
       [6.1, 2.8, 4.7, 1.2],
       [6.4, 2.9, 4.3, 1.3],
       [6.6, 3. , 4.4, 1.4],
       [6.8, 2.8, 4.8, 1.4],
       [6.7, 3. , 5. , 1.7],
       [6. , 2.9, 4.5, 1.5],
       [5.7, 2.6, 3.5, 1. ],
       [5.5, 2.4, 3.8, 1.1],
       [5.5, 2.4, 3.7, 1. ],
       [5.8, 2.7, 3.9, 1.2],
       [6. , 2.7, 5.1, 1.6],
       [5.4, 3. , 4.5, 1.5],
       [6. , 3.4, 4.5, 1.6],
       [6.7, 3.1, 4.7, 1.5],
       [6.3, 2.3, 4.4, 1.3],
       [5.6, 3. , 4.1, 1.3],
       [5.5, 2.5, 4. , 1.3],
       [5.5, 2.6, 4.4, 1.2],
       [6.1, 3. , 4.6, 1.4],
       [5.8, 2.6, 4. , 1.2],
       [5. , 2.3, 3.3, 1. ],
       [5.6, 2.7, 4.2, 1.3],
       [5.7, 3. , 4.2, 1.2],
       [5.7, 2.9, 4.2, 1.3],
       [6.2, 2.9, 4.3, 1.3],
       [5.1, 2.5, 3. , 1.1],
       [5.7, 2.8, 4.1, 1.3],
       [6.3, 3.3, 6. , 2.5],
       [5.8, 2.7, 5.1, 1.9],
       [7.1, 3. , 5.9, 2.1],
       [6.3, 2.9, 5.6, 1.8],
       [6.5, 3. , 5.8, 2.2],
       [7.6, 3. , 6.6, 2.1],
       [4.9, 2.5, 4.5, 1.7],
       [7.3, 2.9, 6.3, 1.8],
       [6.7, 2.5, 5.8, 1.8],
       [7.2, 3.6, 6.1, 2.5],
       [6.5, 3.2, 5.1, 2. ],
       [6.4, 2.7, 5.3, 1.9],
       [6.8, 3. , 5.5, 2.1],
       [5.7, 2.5, 5. , 2. ],
       [5.8, 2.8, 5.1, 2.4],
       [6.4, 3.2, 5.3, 2.3],
       [6.5, 3. , 5.5, 1.8],
       [7.7, 3.8, 6.7, 2.2],
       [7.7, 2.6, 6.9, 2.3],
       [6. , 2.2, 5. , 1.5],
       [6.9, 3.2, 5.7, 2.3],
       [5.6, 2.8, 4.9, 2. ],
       [7.7, 2.8, 6.7, 2. ],
       [6.3, 2.7, 4.9, 1.8],
       [6.7, 3.3, 5.7, 2.1],
       [7.2, 3.2, 6. , 1.8],
       [6.2, 2.8, 4.8, 1.8],
       [6.1, 3. , 4.9, 1.8],
       [6.4, 2.8, 5.6, 2.1],
       [7.2, 3. , 5.8, 1.6],
       [7.4, 2.8, 6.1, 1.9],
       [7.9, 3.8, 6.4, 2. ],
       [6.4, 2.8, 5.6, 2.2],
       [6.3, 2.8, 5.1, 1.5],
       [6.1, 2.6, 5.6, 1.4],
       [7.7, 3. , 6.1, 2.3],
       [6.3, 3.4, 5.6, 2.4],
       [6.4, 3.1, 5.5, 1.8],
       [6. , 3. , 4.8, 1.8],
       [6.9, 3.1, 5.4, 2.1],
       [6.7, 3.1, 5.6, 2.4],
       [6.9, 3.1, 5.1, 2.3],
       [5.8, 2.7, 5.1, 1.9],
       [6.8, 3.2, 5.9, 2.3],
       [6.7, 3.3, 5.7, 2.5],
       [6.7, 3. , 5.2, 2.3],
       [6.3, 2.5, 5. , 1.9],
       [6.5, 3. , 5.2, 2. ],
       [6.2, 3.4, 5.4, 2.3],
       [5.9, 3. , 5.1, 1.8]])
data_x=np.insert(data_x,0,1,axis=1)
data_x.shape,data_y.shape
((150, 5), (150, 1))
#训练数据的特征和标签
data_x,data_y
(array([[1. , 5.1, 3.5, 1.4, 0.2],
        [1. , 4.9, 3. , 1.4, 0.2],
        [1. , 4.7, 3.2, 1.3, 0.2],
        [1. , 4.6, 3.1, 1.5, 0.2],
        [1. , 5. , 3.6, 1.4, 0.2],
        [1. , 5.4, 3.9, 1.7, 0.4],
        [1. , 4.6, 3.4, 1.4, 0.3],
        [1. , 5. , 3.4, 1.5, 0.2],
        [1. , 4.4, 2.9, 1.4, 0.2],
        [1. , 4.9, 3.1, 1.5, 0.1],
        [1. , 5.4, 3.7, 1.5, 0.2],
        [1. , 4.8, 3.4, 1.6, 0.2],
        [1. , 4.8, 3. , 1.4, 0.1],
        [1. , 4.3, 3. , 1.1, 0.1],
        [1. , 5.8, 4. , 1.2, 0.2],
        [1. , 5.7, 4.4, 1.5, 0.4],
        [1. , 5.4, 3.9, 1.3, 0.4],
        [1. , 5.1, 3.5, 1.4, 0.3],
        [1. , 5.7, 3.8, 1.7, 0.3],
        [1. , 5.1, 3.8, 1.5, 0.3],
        [1. , 5.4, 3.4, 1.7, 0.2],
        [1. , 5.1, 3.7, 1.5, 0.4],
        [1. , 4.6, 3.6, 1. , 0.2],
        [1. , 5.1, 3.3, 1.7, 0.5],
        [1. , 4.8, 3.4, 1.9, 0.2],
        [1. , 5. , 3. , 1.6, 0.2],
        [1. , 5. , 3.4, 1.6, 0.4],
        [1. , 5.2, 3.5, 1.5, 0.2],
        [1. , 5.2, 3.4, 1.4, 0.2],
        [1. , 4.7, 3.2, 1.6, 0.2],
        [1. , 4.8, 3.1, 1.6, 0.2],
        [1. , 5.4, 3.4, 1.5, 0.4],
        [1. , 5.2, 4.1, 1.5, 0.1],
        [1. , 5.5, 4.2, 1.4, 0.2],
        [1. , 4.9, 3.1, 1.5, 0.2],
        [1. , 5. , 3.2, 1.2, 0.2],
        [1. , 5.5, 3.5, 1.3, 0.2],
        [1. , 4.9, 3.6, 1.4, 0.1],
        [1. , 4.4, 3. , 1.3, 0.2],
        [1. , 5.1, 3.4, 1.5, 0.2],
        [1. , 5. , 3.5, 1.3, 0.3],
        [1. , 4.5, 2.3, 1.3, 0.3],
        [1. , 4.4, 3.2, 1.3, 0.2],
        [1. , 5. , 3.5, 1.6, 0.6],
        [1. , 5.1, 3.8, 1.9, 0.4],
        [1. , 4.8, 3. , 1.4, 0.3],
        [1. , 5.1, 3.8, 1.6, 0.2],
        [1. , 4.6, 3.2, 1.4, 0.2],
        [1. , 5.3, 3.7, 1.5, 0.2],
        [1. , 5. , 3.3, 1.4, 0.2],
        [1. , 7. , 3.2, 4.7, 1.4],
        [1. , 6.4, 3.2, 4.5, 1.5],
        [1. , 6.9, 3.1, 4.9, 1.5],
        [1. , 5.5, 2.3, 4. , 1.3],
        [1. , 6.5, 2.8, 4.6, 1.5],
        [1. , 5.7, 2.8, 4.5, 1.3],
        [1. , 6.3, 3.3, 4.7, 1.6],
        [1. , 4.9, 2.4, 3.3, 1. ],
        [1. , 6.6, 2.9, 4.6, 1.3],
        [1. , 5.2, 2.7, 3.9, 1.4],
        [1. , 5. , 2. , 3.5, 1. ],
        [1. , 5.9, 3. , 4.2, 1.5],
        [1. , 6. , 2.2, 4. , 1. ],
        [1. , 6.1, 2.9, 4.7, 1.4],
        [1. , 5.6, 2.9, 3.6, 1.3],
        [1. , 6.7, 3.1, 4.4, 1.4],
        [1. , 5.6, 3. , 4.5, 1.5],
        [1. , 5.8, 2.7, 4.1, 1. ],
        [1. , 6.2, 2.2, 4.5, 1.5],
        [1. , 5.6, 2.5, 3.9, 1.1],
        [1. , 5.9, 3.2, 4.8, 1.8],
        [1. , 6.1, 2.8, 4. , 1.3],
        [1. , 6.3, 2.5, 4.9, 1.5],
        [1. , 6.1, 2.8, 4.7, 1.2],
        [1. , 6.4, 2.9, 4.3, 1.3],
        [1. , 6.6, 3. , 4.4, 1.4],
        [1. , 6.8, 2.8, 4.8, 1.4],
        [1. , 6.7, 3. , 5. , 1.7],
        [1. , 6. , 2.9, 4.5, 1.5],
        [1. , 5.7, 2.6, 3.5, 1. ],
        [1. , 5.5, 2.4, 3.8, 1.1],
        [1. , 5.5, 2.4, 3.7, 1. ],
        [1. , 5.8, 2.7, 3.9, 1.2],
        [1. , 6. , 2.7, 5.1, 1.6],
        [1. , 5.4, 3. , 4.5, 1.5],
        [1. , 6. , 3.4, 4.5, 1.6],
        [1. , 6.7, 3.1, 4.7, 1.5],
        [1. , 6.3, 2.3, 4.4, 1.3],
        [1. , 5.6, 3. , 4.1, 1.3],
        [1. , 5.5, 2.5, 4. , 1.3],
        [1. , 5.5, 2.6, 4.4, 1.2],
        [1. , 6.1, 3. , 4.6, 1.4],
        [1. , 5.8, 2.6, 4. , 1.2],
        [1. , 5. , 2.3, 3.3, 1. ],
        [1. , 5.6, 2.7, 4.2, 1.3],
        [1. , 5.7, 3. , 4.2, 1.2],
        [1. , 5.7, 2.9, 4.2, 1.3],
        [1. , 6.2, 2.9, 4.3, 1.3],
        [1. , 5.1, 2.5, 3. , 1.1],
        [1. , 5.7, 2.8, 4.1, 1.3],
        [1. , 6.3, 3.3, 6. , 2.5],
        [1. , 5.8, 2.7, 5.1, 1.9],
        [1. , 7.1, 3. , 5.9, 2.1],
        [1. , 6.3, 2.9, 5.6, 1.8],
        [1. , 6.5, 3. , 5.8, 2.2],
        [1. , 7.6, 3. , 6.6, 2.1],
        [1. , 4.9, 2.5, 4.5, 1.7],
        [1. , 7.3, 2.9, 6.3, 1.8],
        [1. , 6.7, 2.5, 5.8, 1.8],
        [1. , 7.2, 3.6, 6.1, 2.5],
        [1. , 6.5, 3.2, 5.1, 2. ],
        [1. , 6.4, 2.7, 5.3, 1.9],
        [1. , 6.8, 3. , 5.5, 2.1],
        [1. , 5.7, 2.5, 5. , 2. ],
        [1. , 5.8, 2.8, 5.1, 2.4],
        [1. , 6.4, 3.2, 5.3, 2.3],
        [1. , 6.5, 3. , 5.5, 1.8],
        [1. , 7.7, 3.8, 6.7, 2.2],
        [1. , 7.7, 2.6, 6.9, 2.3],
        [1. , 6. , 2.2, 5. , 1.5],
        [1. , 6.9, 3.2, 5.7, 2.3],
        [1. , 5.6, 2.8, 4.9, 2. ],
        [1. , 7.7, 2.8, 6.7, 2. ],
        [1. , 6.3, 2.7, 4.9, 1.8],
        [1. , 6.7, 3.3, 5.7, 2.1],
        [1. , 7.2, 3.2, 6. , 1.8],
        [1. , 6.2, 2.8, 4.8, 1.8],
        [1. , 6.1, 3. , 4.9, 1.8],
        [1. , 6.4, 2.8, 5.6, 2.1],
        [1. , 7.2, 3. , 5.8, 1.6],
        [1. , 7.4, 2.8, 6.1, 1.9],
        [1. , 7.9, 3.8, 6.4, 2. ],
        [1. , 6.4, 2.8, 5.6, 2.2],
        [1. , 6.3, 2.8, 5.1, 1.5],
        [1. , 6.1, 2.6, 5.6, 1.4],
        [1. , 7.7, 3. , 6.1, 2.3],
        [1. , 6.3, 3.4, 5.6, 2.4],
        [1. , 6.4, 3.1, 5.5, 1.8],
        [1. , 6. , 3. , 4.8, 1.8],
        [1. , 6.9, 3.1, 5.4, 2.1],
        [1. , 6.7, 3.1, 5.6, 2.4],
        [1. , 6.9, 3.1, 5.1, 2.3],
        [1. , 5.8, 2.7, 5.1, 1.9],
        [1. , 6.8, 3.2, 5.9, 2.3],
        [1. , 6.7, 3.3, 5.7, 2.5],
        [1. , 6.7, 3. , 5.2, 2.3],
        [1. , 6.3, 2.5, 5. , 1.9],
        [1. , 6.5, 3. , 5.2, 2. ],
        [1. , 6.2, 3.4, 5.4, 2.3],
        [1. , 5.9, 3. , 5.1, 1.8]]),
 array([[0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2],
        [2]]))

由于有三个类别,那么在训练时三类数据要分开

data1=data.copy()
data1
ones F1 F2 F3 F4 target
0 1 5.1 3.5 1.4 0.2 0
1 1 4.9 3.0 1.4 0.2 0
2 1 4.7 3.2 1.3 0.2 0
3 1 4.6 3.1 1.5 0.2 0
4 1 5.0 3.6 1.4 0.2 0
... ... ... ... ... ... ...
145 1 6.7 3.0 5.2 2.3 2
146 1 6.3 2.5 5.0 1.9 2
147 1 6.5 3.0 5.2 2.0 2
148 1 6.2 3.4 5.4 2.3 2
149 1 5.9 3.0 5.1 1.8 2

150 rows × 6 columns

data

data1.loc[data["target"]!=0,"target"]=0
data1.loc[data["target"]==0,"target"]=1
data1
ones F1 F2 F3 F4 target
0 1 5.1 3.5 1.4 0.2 1
1 1 4.9 3.0 1.4 0.2 1
2 1 4.7 3.2 1.3 0.2 1
3 1 4.6 3.1 1.5 0.2 1
4 1 5.0 3.6 1.4 0.2 1
... ... ... ... ... ... ...
145 1 6.7 3.0 5.2 2.3 0
146 1 6.3 2.5 5.0 1.9 0
147 1 6.5 3.0 5.2 2.0 0
148 1 6.2 3.4 5.4 2.3 0
149 1 5.9 3.0 5.1 1.8 0

150 rows × 6 columns

data1_x=data1.iloc[:,:data1.shape[1]-1].values
data1_y=data1.iloc[:,data1.shape[1]-1].values
data1_x.shape,data1_y.shape
((150, 5), (150,))
#针对第二类,即第二个分类器的数据
data2=data.copy()
data2.loc[data["target"]==1,"target"]=1
data2.loc[data["target"]!=1,"target"]=0
data2["target"]==0
0      True
1      True
2      True
3      True
4      True
       ... 
145    True
146    True
147    True
148    True
149    True
Name: target, Length: 150, dtype: bool
data2.shape[1]
6
data2.iloc[50:55,:]
ones F1 F2 F3 F4 target
50 1 7.0 3.2 4.7 1.4 1
51 1 6.4 3.2 4.5 1.5 1
52 1 6.9 3.1 4.9 1.5 1
53 1 5.5 2.3 4.0 1.3 1
54 1 6.5 2.8 4.6 1.5 1
data2_x=data2.iloc[:,:data2.shape[1]-1].values
data2_y=data2.iloc[:,data2.shape[1]-1].values
#针对第三类,即第三个分类器的数据
data3=data.copy()
data3.loc[data["target"]==2,"target"]=1
data3.loc[data["target"]!=2,"target"]=0
data3

ones
F1 F2 F3 F4 target
0 1 5.1 3.5 1.4 0.2 0
1 1 4.9 3.0 1.4 0.2 0
2 1 4.7 3.2 1.3 0.2 0
3 1 4.6 3.1 1.5 0.2 0
4 1 5.0 3.6 1.4 0.2 0
... ... ... ... ... ... ...
145 1 6.7 3.0 5.2 2.3 1
146 1 6.3 2.5 5.0 1.9 1
147 1 6.5 3.0 5.2 2.0 1
148 1 6.2 3.4 5.4 2.3 1
149 1 5.9 3.0 5.1 1.8 1

150 rows × 6 columns

data3_x=data3.iloc[:,:data3.shape[1]-1].values
data3_y=data3.iloc[:,data3.shape[1]-1].values

1.3 定义假设函数,代价函数,梯度下降算法(从实验3复制过来)

def sigmoid(z):
    return 1 / (1 + np.exp(-z))
def h(X,w):
    z=X@w
    h=sigmoid(z)
    return h
#代价函数构造
def cost(X,w,y):
    #当X(m,n+1),y(m,),w(n+1,1)
    y_hat=sigmoid(X@w)
    right=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())
    cost=-np.sum(right)/X.shape[0]
    return cost
def sigmoid(z):
    return 1 / (1 + np.exp(-z))
def h(X,w):
    z=X@w
    h=sigmoid(z)
    return h
#代价函数构造
def cost(X,w,y):
    #当X(m,n+1),y(m,),w(n+1,1)
    y_hat=sigmoid(X@w)
    right=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())
    cost=-np.sum(right)/X.shape[0]
    return cost
def grandient(X,y,iter_num,alpha):
    y=y.reshape((X.shape[0],1))
    w=np.zeros((X.shape[1],1))
    cost_lst=[]  
    for i in range(iter_num):
        y_pred=h(X,w)-y
        temp=np.zeros((X.shape[1],1))
        for j in range(X.shape[1]):
            right=np.multiply(y_pred.ravel(),X[:,j])
            gradient=1/(X.shape[0])*(np.sum(right))
            temp[j,0]=w[j,0]-alpha*gradient
        w=temp
        cost_lst.append(cost(X,w,y.ravel()))
    return w,cost_lst

1.4 调用梯度下降算法来学习三个分类模型的参数

#初始化超参数
iter_num,alpha=600000,0.001
#训练第一个模型
w1,cost_lst1=grandient(data1_x,data1_y,iter_num,alpha)
import matplotlib.pyplot as plt
plt.plot(range(iter_num),cost_lst1,"b-o")
[<matplotlib.lines.Line2D at 0x2562630b100>]


#训练第二个模型
w2,cost_lst2=grandient(data2_x,data2_y,iter_num,alpha)
import matplotlib.pyplot as plt
plt.plot(range(iter_num),cost_lst2,"b-o")
[<matplotlib.lines.Line2D at 0x25628114280>]

#训练第三个模型
w3,cost_lst3=grandient(data3_x,data3_y,iter_num,alpha)
w3
array([[-3.22437049],
       [-3.50214058],
       [-3.50286355],
       [ 5.16580317],
       [ 5.89898368]])
import matplotlib.pyplot as plt
plt.plot(range(iter_num),cost_lst3,"b-o")
[<matplotlib.lines.Line2D at 0x2562e0f81c0>]

1.5 利用模型进行预测

h(data_x,w3)
array([[1.48445441e-11],
       [1.72343968e-10],
       [1.02798153e-10],
       [5.81975546e-10],
       [1.48434710e-11],
       [1.95971176e-11],
       [2.18959639e-10],
       [5.01346874e-11],
       [1.40930075e-09],
       [1.12830635e-10],
       [4.31888744e-12],
       [1.69308343e-10],
       [1.35613372e-10],
       [1.65858883e-10],
       [7.89880725e-14],
       [4.23224675e-13],
       [2.48199140e-12],
       [2.67766642e-11],
       [5.39314286e-12],
       [1.56935848e-11],
       [3.47096426e-11],
       [4.01827075e-11],
       [7.63005509e-12],
       [8.26864773e-10],
       [7.97484594e-10],
       [3.41189783e-10],
       [2.73442178e-10],
       [1.75314894e-11],
       [1.48456174e-11],
       [4.84204982e-10],
       [4.84239990e-10],
       [4.01914238e-11],
       [1.18813180e-12],
       [3.14985611e-13],
       [2.03524473e-10],
       [2.14461446e-11],
       [2.18189955e-12],
       [1.16799745e-11],
       [5.92281641e-10],
       [3.53217554e-11],
       [2.26727669e-11],
       [8.74004884e-09],
       [2.93949962e-10],
       [6.26783110e-10],
       [2.23513465e-10],
       [4.41246960e-10],
       [1.45841303e-11],
       [2.44584721e-10],
       [6.13010507e-12],
       [4.24539165e-11],
       [1.64123143e-03],
       [8.55503211e-03],
       [1.65105645e-02],
       [9.87814122e-02],
       [3.97290777e-02],
       [1.11076040e-01],
       [4.19003715e-02],
       [2.88426221e-03],
       [6.27161978e-03],
       [7.67020481e-02],
       [2.27204861e-02],
       [2.08212169e-02],
       [4.58067633e-03],
       [9.90450665e-02],
       [1.19419048e-03],
       [1.41462060e-03],
       [2.22638069e-01],
       [2.68940904e-03],
       [3.66014737e-01],
       [6.97791873e-03],
       [5.78803255e-01],
       [2.32071970e-03],
       [5.28941621e-01],
       [4.57649874e-02],
       [2.69208900e-03],
       [2.84603646e-03],
       [2.20421076e-02],
       [2.07507605e-01],
       [9.10460936e-02],
       [2.44824946e-04],
       [8.37509821e-03],
       [2.78543808e-03],
       [3.11283202e-03],
       [8.89831833e-01],
       [3.65880536e-01],
       [3.03993844e-02],
       [1.18930239e-02],
       [4.99150151e-02],
       [1.10252946e-02],
       [5.15923462e-02],
       [1.43653056e-01],
       [4.41610209e-02],
       [7.37513950e-03],
       [2.88447014e-03],
       [5.07366744e-02],
       [7.24617687e-03],
       [1.83460602e-02],
       [5.40874928e-03],
       [3.87210511e-04],
       [1.55791816e-02],
       [9.99862942e-01],
       [9.89637526e-01],
       [9.86183040e-01],
       [9.83705644e-01],
       [9.98410187e-01],
       [9.97834502e-01],
       [9.84208537e-01],
       [9.85434538e-01],
       [9.94141336e-01],
       [9.94561329e-01],
       [7.20333384e-01],
       [9.70431293e-01],
       [9.62754456e-01],
       [9.96609064e-01],
       [9.99222270e-01],
       [9.83684437e-01],
       [9.26437633e-01],
       [9.83486260e-01],
       [9.99950496e-01],
       [9.39002061e-01],
       [9.88043323e-01],
       [9.88637702e-01],
       [9.98357641e-01],
       [7.65848930e-01],
       [9.73006160e-01],
       [8.76969899e-01],
       [6.61137141e-01],
       [6.97324053e-01],
       [9.97185846e-01],
       [6.11033594e-01],
       [9.77494647e-01],
       [6.58573810e-01],
       [9.98437920e-01],
       [5.24529693e-01],
       [9.70465066e-01],
       [9.87624920e-01],
       [9.97236435e-01],
       [9.26432706e-01],
       [6.61104746e-01],
       [8.84442100e-01],
       [9.96082862e-01],
       [8.40940308e-01],
       [9.89637526e-01],
       [9.96974990e-01],
       [9.97386310e-01],
       [9.62040470e-01],
       [9.52214579e-01],
       [8.96902215e-01],
       [9.90200940e-01],
       [9.28785160e-01]])
#将数据输入三个模型的看看结果
multi_pred=pd.DataFrame(zip(h(data_x,w1).ravel(),h(data_x,w2).ravel(),h(data_x,w3).ravel()))
multi_pred

0
1 2
0 0.999297 0.108037 1.484454e-11
1 0.997061 0.270814 1.723440e-10
2 0.998633 0.164710 1.027982e-10
3 0.995774 0.231910 5.819755e-10
4 0.999415 0.085259 1.484347e-11
... ... ... ...
145 0.000007 0.127574 9.620405e-01
146 0.000006 0.496389 9.522146e-01
147 0.000010 0.234745 8.969022e-01
148 0.000006 0.058444 9.902009e-01
149 0.000014 0.284295 9.287852e-01

150 rows × 3 columns

multi_pred.values[:3]
array([[9.99297209e-01, 1.08037473e-01, 1.48445441e-11],
       [9.97060801e-01, 2.70813780e-01, 1.72343968e-10],
       [9.98632728e-01, 1.64709623e-01, 1.02798153e-10]])
#每个样本的预测值
np.argmax(multi_pred.values,axis=1)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2,
       2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2], dtype=int64)
#每个样本的真实值
data_y
array([[0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [1],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2],
       [2]])


目录
相关文章
|
5天前
|
开发者 Python
探索Python中的装饰器:从入门到实践
【8月更文挑战第41天】本文通过深入浅出的方式,引导读者理解Python装饰器的概念、原理及应用。我们将从装饰器的定义出发,逐步深入其背后的工作原理,并通过实际代码示例,展示如何自定义装饰器以及装饰器的高级用法。文章旨在帮助初学者快速掌握装饰器的使用,同时为有一定基础的开发者提供进阶知识。
|
1天前
|
数据可视化 数据处理 开发者
构建高效的数据流图:Python与PyGraphviz的实践
【9月更文挑战第13天】在本文中,我们将探索如何利用Python和PyGraphviz库来创建和操作数据流图。我们将通过一个具体示例,展示如何从零开始构建一张数据流图,并讨论如何优化图表以提高可读性。文章旨在为初学者提供一个清晰的入门指南,同时为有经验的开发者提供一些高级技巧。
|
2天前
|
Rust API Python
Python Requests 库中的重试策略实践
在网络请求中,由于网络波动或服务暂时不可达等原因,请求可能失败。为增强客户端健壮性,自动重试机制变得尤为重要。本文介绍如何在 Python 的 `requests` 库中实现请求自动重试,通过 `urllib3` 的 `Retry` 类配置重试策略,并提供了一个具体示例,展示了如何设置重试次数、状态码集合及异常类型等参数,从而提高系统的可靠性和容错能力。
|
11天前
|
缓存 测试技术 Python
Python 中的装饰器:从入门到实践
【9月更文挑战第3天】本文将引导你理解 Python 中装饰器的概念,并通过实际代码示例展示如何创建和使用装饰器。我们将从基础出发,逐步深入到装饰器的高级应用,让你能够轻松掌握这一强大的工具。
|
8天前
|
机器学习/深度学习 数据采集 人工智能
使用Python实现简单的机器学习分类器
【8月更文挑战第37天】本文将引导读者了解如何利用Python编程语言构建一个简单的机器学习分类器。我们将从基础概念出发,通过代码示例逐步深入,探索数据预处理、模型选择、训练和评估过程。文章旨在为初学者提供一条清晰的学习路径,帮助他们理解并实现基本的机器学习任务。
|
6天前
|
机器学习/深度学习 算法 Python
从菜鸟到大师:一棵决策树如何引领你的Python机器学习之旅
【9月更文挑战第9天】在数据科学领域,机器学习如同璀璨明珠,吸引无数探索者。尤其对于新手而言,纷繁复杂的算法常让人感到迷茫。本文将以决策树为切入点,带您从Python机器学习的新手逐步成长为高手。决策树以其直观易懂的特点成为入门利器。通过构建决策树分类器并应用到鸢尾花数据集上,我们展示了其基本用法及效果。掌握决策树后,还需深入理解其工作原理,调整参数,并探索集成学习方法,最终将所学应用于实际问题解决中,不断提升技能。愿这棵智慧之树助您成为独当一面的大师。
16 3
|
8天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的编程实践:从Python到深度学习的探索之旅
【9月更文挑战第6天】 在人工智能的黄金时代,编程不仅仅是一种技术操作,它成为了连接人类思维与机器智能的桥梁。本文将通过一次从Python基础入门到构建深度学习模型的实践之旅,揭示编程在AI领域的魅力和重要性。我们将探索如何通过代码示例简化复杂概念,以及如何利用编程技能解决实际问题。这不仅是一次技术的学习过程,更是对人工智能未来趋势的思考和预见。
|
6天前
|
C语言 Python
深入理解并实践Python中的列表推导式
深入理解并实践Python中的列表推导式
9 1
|
8天前
|
机器学习/深度学习 算法 Python
决策树下的智慧果实:Python机器学习实战,轻松摘取数据洞察的果实
【9月更文挑战第7天】当我们身处数据海洋,如何提炼出有价值的洞察?决策树作为一种直观且强大的机器学习算法,宛如智慧之树,引领我们在繁复的数据中找到答案。通过Python的scikit-learn库,我们可以轻松实现决策树模型,对数据进行分类或回归分析。本教程将带领大家从零开始,通过实际案例掌握决策树的原理与应用,探索数据中的秘密。
19 1
|
13天前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
【8月更文挑战第33天】本文旨在通过浅显易懂的语言,带领读者了解Python中一个强大而神秘的功能——装饰器。我们将从装饰器的基本概念出发,逐步深入到它们的高级应用,最后通过实际代码示例展示如何在日常编程中灵活运用装饰器来简化代码、增强功能。文章不仅适合初学者构建对装饰器的初步认识,也适合有一定基础的开发者深化理解并实践。
28 5