java之线程死锁和ThreadLocal的使用

简介: java之线程死锁和ThreadLocal的使用

线程死锁

线程死锁是指两个或者两个以上的线程在执行过程中,由于竞争资源或者彼此通信而造成的一种阻塞的现象,若无外力的作用,它们都将无法继续执行下去。

此时应用系统就处于了死锁状态,这些永远在互相等待的线程称为死锁线程。


如下图所示:


在某个状态线程A对对象A进行了加锁,并试图对对象B加锁后继续运行程序;而线程B对对象B进行了加锁,并试图对对象A加锁后继续运行程序。

由于线程A无法释放对象A的锁而又不能对对象B加锁,线程B无法释放对象B的锁而又不能对对象A加锁,因此两个线程处于了相互等待状态,出现死锁

package Runnable;
public class deadlock {
    private Object object1=new Object();
    private Object object2=new Object();
    public Object getObject1() {
        return object1;
    }
    public Object getObject2() {
        return object2;
    }
}
//lock1类
class lock1 implements Runnable{
    private deadlock deadlock1;
    public lock1(deadlock deadlock1) {
        this.deadlock1=deadlock1;
    }
    @Override
    public void run() {
        System.out.println("lock1线程对象正在运行.....");
        //第一步--->lock1所在的线程执行run()方法后获得obj1对象的锁,然后休眠让出CPU的使用权
        synchronized (deadlock1.getObject1()) { //对obj1对象进行加锁
            System.out.println("lock1线程对象对obj1加了锁");
            try {
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            synchronized (deadlock1.getObject2()) //对obj2对象进行加锁
            {
                System.out.println("lock1线程对象对obj2加了锁");
            }
        }
        System.out.println("lock1线程对象运行结束.......");
    }
}
//lock2类
class lock2 implements Runnable{
    private deadlock deadlock1;
    public lock2(deadlock deadlock1) {
        this.deadlock1=deadlock1;
    }
    @Override
    public void run() {
        System.out.println("lock2线程对象正在运行.....");
        //第二步--->lock2所在的线程执行run()方法后获得obj2对象的锁,休眠让出CPU的使用权。
        //对obj2对象进行加锁
        synchronized (deadlock1.getObject2()) {
            System.out.println("lock2线程对象对obj2加了锁");
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            synchronized (deadlock1.getObject1()) //对obj2对象进行加锁
            {
                System.out.println("lock2线程对象对obj1加了锁");
            }
        }
        System.out.println("lock2线程对象运行结束.......");
    }
}
//测试类
class deadlock_test{
    public static void main(String[] args) {
        deadlock deadlock1=new deadlock();
        lock1 lock1=new lock1(deadlock1);
        lock2 lock2=new lock2(deadlock1);
        new Thread(lock1).start();
        new Thread(lock2).start();
    }
}

输出:

lock1线程对象正在运行.....
lock1线程对象对obj1加了锁
lock2线程对象正在运行.....
lock2线程对象对obj2加了锁

分析如下:


lock1所在的线程下一次运行时要申请对obj2对象加锁,由于obj2已经被lock2所在的线加锁而且没有释放,所以 lock1 所在的线程就会等待;


lock2所在的线程下一次运行时要申请对obj1对象加锁,由于obj1已经被lock1所在的锁而且没有释放,所以lock2所在的线程就等待


两者之间相互等待对方的锁,从而形成了死锁的状态,程序不再继续执行

因此运行结果中并没有出现“lock1 线程对象运行结束…”和“lock2线程对象运行结束…”这两行信息


ThreadLocal的使用:

ThreadLocal的本质是一个 Map,ThreadLocal中存储的数据和当前线程相关,可以使用 ThreadLocal 解决线程范围内的数据共享问题

ThreadLocal所包含的方法:

void set(T value)   //将值放入线程局部变量中
T get()         //从线程局部变量中获取值
void remove()     //从线程局部变量中移除值
T initialValue()    //返回线程局部变量中的初始值

ThreadLocal简单使用:

假定有这样一个应用场景:有模块 A 和模块 B 或者更多其他的模块,这些模块在一个线程生命周期范围内要访问“同一个”数据,这里的同一个不是指数据的值相同,而是指不能与其他线程对象混淆的数据。

举例:

package Runnable;
//线程类
 class DataThread implements Runnable{
    @Override
    public void run() {
        int x=(int)(Math.random()*100);//随机生成一个100以内的整数
        Mydata_test.threadScopData.set(new MyData(x));//将生成的随机数封装成Data存储到ThreadLocal对象中
        new showdata1().show();//模块1显示数据
        new showdata2().show();//模块2显示数据
    }
}
//封装要显示的数据
class MyData{
    private int number;
    public MyData(int number) {
        this.number = number;
    }
    public int getNumber() {
        return number;
    }
}
//表示输出模块1
class showdata1{
    public void show(){
        MyData data=Mydata_test.threadScopData.get();//从当前线程中拿到数据
        System.out.println("模块A从"+Thread.currentThread().getName()+"取出的数据是:"+data.getNumber());
    }
}
//表示输出模块2
class showdata2{
    public void show(){
        MyData data=Mydata_test.threadScopData.get();//从当前线程中拿到数据
        System.out.println("模块B从"+Thread.currentThread().getName()+"取出的数据是:"+data.getNumber());
    }
}
//测试类
class Mydata_test{
    //创建ThreadLocal对象,存储MyData类型的数据
    public static ThreadLocal<MyData> threadScopData=new ThreadLocal<>();
    public static void main(String[] args) {
        for(int i=0;i<3;i++){
            DataThread dataThread=new DataThread();
            new Thread(dataThread,"线程"+i).start();//创建线程并启动
        }
    }
}

输出:

模块A从线程0取出的数据是:74
模块A从线程2取出的数据是:77
模块A从线程1取出的数据是:48
模块B从线程1取出的数据是:48
模块B从线程2取出的数据是:77
模块B从线程0取出的数据是:74

从运行结果可以看出:模块1和模块2在同一个线对象中从dataThread中取出的数据是相同的,实现了不同模块在同一个线程中获取“同一个”数据的需求

注意:

(1)ThreadLocal为每一个线程提供了一个独立的副本
(2)当一个类中使用了static,如果多线程环境中每个线程要独享这个static变量,此时需要考虑使用 ThreadLocal来存储这个变量。
相关文章
|
25天前
|
存储 监控 Java
【Java并发】【线程池】带你从0-1入门线程池
欢迎来到我的技术博客!我是一名热爱编程的开发者,梦想是编写高端CRUD应用。2025年我正在沉淀中,博客更新速度加快,期待与你一起成长。 线程池是一种复用线程资源的机制,通过预先创建一定数量的线程并管理其生命周期,避免频繁创建/销毁线程带来的性能开销。它解决了线程创建成本高、资源耗尽风险、响应速度慢和任务执行缺乏管理等问题。
157 60
【Java并发】【线程池】带你从0-1入门线程池
|
14天前
|
存储 网络协议 安全
Java网络编程,多线程,IO流综合小项目一一ChatBoxes
**项目介绍**:本项目实现了一个基于TCP协议的C/S架构控制台聊天室,支持局域网内多客户端同时聊天。用户需注册并登录,用户名唯一,密码格式为字母开头加纯数字。登录后可实时聊天,服务端负责验证用户信息并转发消息。 **项目亮点**: - **C/S架构**:客户端与服务端通过TCP连接通信。 - **多线程**:采用多线程处理多个客户端的并发请求,确保实时交互。 - **IO流**:使用BufferedReader和BufferedWriter进行数据传输,确保高效稳定的通信。 - **线程安全**:通过同步代码块和锁机制保证共享数据的安全性。
65 23
|
3天前
|
存储 设计模式 Java
重学Java基础篇—ThreadLocal深度解析与最佳实践
ThreadLocal 是一种实现线程隔离的机制,为每个线程创建独立变量副本,适用于数据库连接管理、用户会话信息存储等场景。
27 5
|
1月前
|
安全 Java 开发者
Java并发迷宫:同步的魔法与死锁的诅咒
在Java并发编程中,合理使用同步机制可以确保线程安全,避免数据不一致的问题。然而,必须警惕死锁的出现,采取适当的预防措施。通过理解同步的原理和死锁的成因,并应用有效的设计和编码实践,可以构建出高效、健壮的多线程应用程序。
45 21
|
21天前
|
Java 调度
【源码】【Java并发】【线程池】邀请您从0-1阅读ThreadPoolExecutor源码
当我们创建一个`ThreadPoolExecutor`的时候,你是否会好奇🤔,它到底发生了什么?比如:我传的拒绝策略、线程工厂是啥时候被使用的? 核心线程数是个啥?最大线程数和它又有什么关系?线程池,它是怎么调度,我们传入的线程?...不要着急,小手手点上关注、点赞、收藏。主播马上从源码的角度带你们探索神秘线程池的世界...
91 0
【源码】【Java并发】【线程池】邀请您从0-1阅读ThreadPoolExecutor源码
|
1月前
|
Java 程序员 开发者
Java社招面试题:一个线程运行时发生异常会怎样?
大家好,我是小米。今天分享一个经典的 Java 面试题:线程运行时发生异常,程序会怎样处理?此问题考察 Java 线程和异常处理机制的理解。线程发生异常,默认会导致线程终止,但可以通过 try-catch 捕获并处理,避免影响其他线程。未捕获的异常可通过 Thread.UncaughtExceptionHandler 处理。线程池中的异常会被自动处理,不影响任务执行。希望这篇文章能帮助你深入理解 Java 线程异常处理机制,为面试做好准备。如果你觉得有帮助,欢迎收藏、转发!
129 14
|
1月前
|
安全 Java 程序员
Java 面试必问!线程构造方法和静态块的执行线程到底是谁?
大家好,我是小米。今天聊聊Java多线程面试题:线程类的构造方法和静态块是由哪个线程调用的?构造方法由创建线程实例的主线程调用,静态块在类加载时由主线程调用。理解这些细节有助于掌握Java多线程机制。下期再见! 简介: 本文通过一个常见的Java多线程面试题,详细讲解了线程类的构造方法和静态块是由哪个线程调用的。构造方法由创建线程实例的主线程调用,静态块在类加载时由主线程调用。理解这些细节对掌握Java多线程编程至关重要。
60 13
|
1月前
|
安全 Java 开发者
【JAVA】封装多线程原理
Java 中的多线程封装旨在简化使用、提高安全性和增强可维护性。通过抽象和隐藏底层细节,提供简洁接口。常见封装方式包括基于 Runnable 和 Callable 接口的任务封装,以及线程池的封装。Runnable 适用于无返回值任务,Callable 支持有返回值任务。线程池(如 ExecutorService)则用于管理和复用线程,减少性能开销。示例代码展示了如何实现这些封装,使多线程编程更加高效和安全。
|
2月前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
135 17
|
3月前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者