【100天精通Python】Day59:Python 数据分析_Pandas高级功能-多层索引创建访问切片和重塑操作,pandas自定义函数和映射功能

简介: 【100天精通Python】Day59:Python 数据分析_Pandas高级功能-多层索引创建访问切片和重塑操作,pandas自定义函数和映射功能

1 多层索引(MultiIndex)

       Pandas 的多层索引(MultiIndex)允许你在一个DataFrame的行或列上拥有多个层次化的索引,这使得你能够处理更复杂的数据结构,例如多维时间序列数据或具有层次结构的数据。以下是多层索引的详细说明和示例:

1.1 创建多层索引

       你可以使用多种方式来创建多层索引,包括从元组、列表或数组创建,或者通过设置 set_index() 方法。以下是一些示例:

1.1.1 从元组创建多层索引
import pandas as pd
# 从元组创建多层索引
index = pd.MultiIndex.from_tuples([('A', 1), ('A', 2), ('B', 1), ('B', 2)], names=['Label1', 'Label2'])
# 创建带多层索引的DataFrame
data = {'Values': [10, 20, 30, 40]}
df = pd.DataFrame(data, index=index)
print(df)

1.1.2 使用 set_index() 方法创建多层索引
import pandas as pd
# 创建一个普通的DataFrame
data = {'Label1': ['A', 'A', 'B', 'B'],
        'Label2': [1, 2, 1, 2],
        'Values': [10, 20, 30, 40]}
df = pd.DataFrame(data)
# 使用set_index()方法将列转换为多层索引
df.set_index(['Label1', 'Label2'], inplace=True)
print(df)

1.2 访问多层索引数据

你可以使用 .loc[] 方法来访问多层索引中的数据。通过提供多个索引级别的标签,你可以精确地选择所需的数据。以下是一些示例:

# 访问指定多层索引的数据
print(df.loc['A'])  # 访问Label1为'A'的所有数据
print(df.loc['A', 1])  # 访问Label1为'A'且Label2为1的数据

1.3 多层索引的层次切片

你可以使用切片操作来选择多层索引的一部分数据。如下:

# 切片操作:选择Label1为'A'到'B'的数据
print(df.loc['A':'B'])
# 切片操作:选择Label1为'A'且Label2为1到2的数据
print(df.loc['A', 1:2])

1.4 多层索引的重塑

你可以使用 .stack().unstack() 方法来重塑具有多层索引的数据。.stack() 可以将列标签转换为索引级别,而 .unstack() 可以将索引级别转换为列标签。如下:

# 使用stack()方法将列标签转换为索引级别
stacked_df = df.stack()
# 使用unstack()方法将索引级别转换为列标签
unstacked_df = stacked_df.unstack()

这些是关于Pandas多层索引的基本说明和示例。多层索引是处理复杂数据的重要工具,使你能够更灵活地组织和访问数据。你可以根据数据的特点和需求来选择使用多层索引的方式。

2 自定义函数和映射

       在 Pandas 中,你可以使用自定义函数和映射来对数据进行转换和处理。这些方法非常有用,因为它们允许你根据自己的需求自定义数据操作。以下是有关如何在 Pandas 中使用自定义函数和映射的详细说明和示例:

2.1 使用 apply() 方法进行自定义函数操作

 apply() 方法可以用于在DataFrame的行或列上应用自定义函数。你可以将一个函数应用到一列,也可以将其应用到整个DataFrame。以下是示例:

import pandas as pd
# 创建一个示例DataFrame
data = {'A': [1, 2, 3, 4],
        'B': [10, 20, 30, 40]}
df = pd.DataFrame(data)
# 自定义函数,将A列的值加倍
def double(x):
    return x * 2
# 使用apply()将自定义函数应用到A列
df['A_doubled'] = df['A'].apply(double)
print(df)

输出:

2.2 使用 map() 方法进行映射操作

 map() 方法可以用于将一个Series的值映射为另一个Series的值,通常用于对某一列进行值替换或映射。以下是示例:

import pandas as pd
# 创建一个示例DataFrame
data = {'A': ['foo', 'bar', 'baz'],
        'B': [1, 2, 3]}
df = pd.DataFrame(data)
# 创建一个字典来映射A列的值
mapping = {'foo': 'apple', 'bar': 'banana', 'baz': 'cherry'}
# 使用map()将A列的值映射为新的值
df['A_mapped'] = df['A'].map(mapping)
print(df)

输出:

2.3 使用 applymap() 进行元素级的自定义函数操作

   applymap() 方法用于对DataFrame的每个元素应用自定义函数。这是一种适用于整个DataFrame的元素级别的操作。以下是示例:

import pandas as pd
# 创建一个示例DataFrame
data = {'A': [1, 2, 3],
        'B': [4, 5, 6]}
df = pd.DataFrame(data)
# 自定义函数,将每个元素乘以2
def double(x):
    return x * 2
# 使用applymap()将自定义函数应用到整个DataFrame
df_doubled = df.applymap(double)
print(df_doubled)

输出:

      这些是在 Pandas 中使用自定义函数和映射的基本示例。通过使用这些方法,你可以自定义数据操作,使其满足你的需求。无论是进行数据清理、数值计算还是进行值映射,自定义函数和映射都是非常有用的工具。

3 Pandas性能优化常用技巧和操作

        Pandas 性能优化是一个重要的主题,特别是当你处理大规模数据集时。以下是一些用于提高 Pandas 性能的一般性建议和技巧:

  1. 选择合适的数据结构: 在 Pandas 中,有两种主要的数据结构,DataFrame 和 Series。确保选择最适合你数据的结构。例如,如果你只需要处理一维数据,使用 Series 比 DataFrame 更高效。
  2. 避免使用循环: 尽量避免使用显式的循环来处理数据,因为它们通常比 Pandas 内置的向量化操作慢。使用 Pandas 内置的函数和方法,如 apply()map()groupby() 来替代循环操作。
  3. 使用 atiat 访问元素: 如果只需要访问单个元素而不是整个行或列,请使用 .at[].iat[] 方法,它们比 .loc[].iloc[] 更快。
  4. 使用 .loc[] 和 .iloc[] 进行切片: 使用 .loc[] 和 .iloc[] 可以实现更快的切片和索引,避免复制数据。使用 .loc[] 和 .iloc[] 进行索引: 使用 .loc[] 和 .iloc[] 索引器来访问数据,这比直接使用中括号 [] 更高效,特别是当你需要选择多行或多列时。
  5. 适当设置内存选项: 通过设置 Pandas 的内存选项,如 pd.set_option('max_rows', None)pd.set_option('max_columns', None),可以控制显示的最大行数和列数。这有助于防止在大型数据集上显示大量数据。
  6. 合并和连接优化: 使用合适的合并和连接方法,如 pd.merge()pd.concat(),并使用 onhowsuffixes 等参数来优化操作。
  7. 使用合适的数据类型:尽量使用 astype() 方法来显式指定数据类型,而不是让 Pandas 自动推断。这可以减少内存使用并提高性能。 Pandas 会自动为每一列选择数据类型,但你可以显式指定数据类型来减少内存使用并提高性能。使用pd.to_numeric()、pd.to_datetime() 等方法将列转换为正确的数据类型。
  8. 使用 HDF5 存储: 对于大型数据集,考虑将数据存储在 HDF5 格式中,以便快速读取和写入数据。
  9. 适时使用 inplace 参数: 在 Pandas 中,许多方法默认不会修改原始数据,而是返回一个新的对象。如果你确定要在原始数据上进行操作而不需要创建新对象,可以使用 inplace=True 参数来节省内存和提高性能。
  10. 并行处理: 对于大数据集,考虑使用并行计算来加速数据处理。Pandas 提供了 multiprocessing 库来实现并行处理。
目录
相关文章
|
4天前
|
数据挖掘 数据处理 索引
python常用pandas函数nlargest / nsmallest及其手动实现
python常用pandas函数nlargest / nsmallest及其手动实现
19 0
|
5天前
|
数据处理 Python
如何使用Python的Pandas库进行数据排序和排名
【4月更文挑战第22天】Pandas Python库提供数据排序和排名功能。使用`sort_values()`按列进行升序或降序排序,如`df.sort_values(by='A', ascending=False)`。`rank()`函数用于计算排名,如`df['A'].rank(ascending=False)`。多列操作可传入列名列表,如`df.sort_values(by=['A', 'B'], ascending=[True, False])`和分别对'A'、'B'列排名。
15 2
|
6天前
|
索引 Python
如何在Python中使用Pandas库进行季节性调整?
在Python中使用Pandas和Statsmodels进行季节性调整的步骤包括:导入pandas和seasonal_decompose模块,准备时间序列DataFrame,调用`seasonal_decompose()`函数分解数据为趋势、季节性和残差,可选地绘制图表分析,以及根据需求去除季节性影响(如将原始数据减去季节性成分)。这是对时间序列数据进行季节性分析的基础流程。
19 2
|
2天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
【4月更文挑战第25天】R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
|
4天前
|
数据挖掘 数据处理 索引
如何使用Python的Pandas库进行数据筛选和过滤?
Pandas是Python数据分析的核心库,提供DataFrame数据结构。基本步骤包括导入库、创建DataFrame及进行数据筛选。示例代码展示了如何通过布尔索引、`query()`和`loc[]`方法筛选`Age`大于19的记录。
10 0
|
6天前
|
Python
如何使用Python的Pandas库进行数据缺失值处理?
Pandas在Python中提供多种处理缺失值的方法:1) 使用`isnull()`检查;2) `dropna()`删除含缺失值的行或列;3) `fillna()`用常数、前后值填充;4) `interpolate()`进行插值填充。根据需求选择合适的方法处理数据缺失。
40 9
|
8天前
|
索引 Python
如何使用Python的Pandas库进行数据透视表(pivot table)操作?
使用Pandas在Python中创建数据透视表的步骤包括:安装Pandas库,导入它,创建或读取数据(如DataFrame),使用`pd.pivot_table()`指定数据框、行索引、列索引和值,计算聚合函数(如平均分),并可打印或保存结果到文件。这允许对数据进行高效汇总和分析。
10 2
|
8天前
|
机器学习/深度学习 数据挖掘 计算机视觉
python数据分析工具SciPy
【4月更文挑战第15天】SciPy是Python的开源库,用于数学、科学和工程计算,基于NumPy扩展了优化、线性代数、积分、插值、特殊函数、信号处理、图像处理和常微分方程求解等功能。它包含优化、线性代数、积分、信号和图像处理等多个模块。通过SciPy,可以方便地执行各种科学计算任务。例如,计算高斯分布的PDF,需要结合NumPy使用。要安装SciPy,可以使用`pip install scipy`命令。这个库极大地丰富了Python在科学计算领域的应用。
12 1
|
9天前
|
数据可视化 数据挖掘 Python
Python中数据分析工具Matplotlib
【4月更文挑战第14天】Matplotlib是Python的数据可视化库,能生成多种图表,如折线图、柱状图等。以下是一个绘制简单折线图的代码示例: ```python import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5] y = [2, 4, 6, 8, 10] plt.figure() plt.plot(x, y) plt.title('简单折线图') plt.xlabel('X轴') plt.ylabel('Y轴') plt.show() ```
13 1
|
9天前
|
数据采集 SQL 数据可视化
Python数据分析工具Pandas
【4月更文挑战第14天】Pandas是Python的数据分析库,提供Series和DataFrame数据结构,用于高效处理标记数据。它支持从多种数据源加载数据,包括CSV、Excel和SQL。功能包括数据清洗(处理缺失值、异常值)、数据操作(切片、过滤、分组)、时间序列分析及与Matplotlib等库集成进行数据可视化。其高性能底层基于NumPy,适合大型数据集处理。通过加载数据、清洗、分析和可视化,Pandas简化了数据分析流程。广泛的学习资源使其成为数据分析初学者的理想选择。
15 1