MySQL中的explain解析

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: MySQL中的explain解析

MySQL中的explain解析


文章目录

explain

explain概念

使用EXTENED关键字,EXPLAIN语句将产生附加信息。执行该语句,可以分析EXPLAIN后面SELECT语句的执行情况,并且能够分析出所查询表的一些特征。

MySQL中提供了EXPLAIN语句和DESCRIBE语句,用来分析查询语句,EXPLAIN语句的基本语法如下:

EXPLAIN [EXTENDED] SELECT select_options

查询结果解析

下面对查询结果进行解释:

字段 说明
id SELECT识别符。这是SELECT的查询序列号。
select_type 表示SELECT语句的类型。
table 表示查询的表。
type 表示表的连接类型。
possible_keys 给出了MySQL在搜索数据记录时可选用的各个索引。
key 是MySQL实际选用的索引。
key_len 给出索引按字节计算的长度,key_len数值越小,表示越快。
ref 给出了关联关系中另一个数据表里的数据列名。
rows 是MySQL在执行这个查询时预计会从这个数据表里读出的数据行的个数。
Extra 提供了与关联操作有关的信息。

就比如下面的explain解释查询语句:

EXPLAIN SELECT * FROM user WHERE username='玉如';

查询结果如下:

DESCRIBE语句的使用方法与EXPLAIN语句是一样的,分析结果也是一样的,并且可以缩写成DESC,DESCRIBE语句的语法形式如下:

DESCRIBE SELECT select_options

例如:

DESCRIBE SELECT * FROM user WHERE username='玉如'; 

查询结果如下:

explain关注点

重点要关注如下几列:

列名 备注
type 本次查询表联接类型,从这里可以看到本次查询大概的效率。
key 最终选择的索引,如果没有索引的话,本次查询效率通常很差。
key_len 本次查询用于结果过滤的索引实际长度。
rows 预计需要扫描的记录数,预计需要扫描的记录数越小越好。
Extra 额外附加信息,主要确认是否出现 Using filesort、Using temporary 这两种情况。

其中,type包含以下几种结果,从上之下依次是最差到最好:

类型 备注
ALL 执行full table scan,这是最差的一种方式。
index 执行full index scan,并且可以通过索引完成结果扫描并且直接从索引中取的想要的结果数据,也就是可以避免回表,比ALL略好,因为索引文件通常比全部数据要来的小。
range 利用索引进行范围查询,比index略好。
index_subquery 子查询中可以用到索引。
unique_subquery 子查询中可以用到唯一索引,效率比 index_subquery 更高些。
index_merge 可以利用index merge特性用到多个索引,提高查询效率。
ref_or_null 表连接类型是ref,但进行扫描的索引列中可能包含NULL值。
fulltext 全文检索。
ref 基于索引的等值查询,或者表间等值连接。
eq_ref 表连接时基于主键或非NULL的唯一索引完成扫描,比ref略好。
const 基于主键或唯一索引唯一值查询,最多返回一条结果,比eq_ref略好。
system 查询对象表只有一行数据,这是最好的情况。

另外,Extra列需要注意以下的几种情况:

字段 说明
Using filesort 将用外部排序而不是按照索引顺序排列结果,数据较少时从内存排序,否则需要在磁盘完成排序,代价非常高,需要添加合适的索引。
Using temporary 需要创建一个临时表来存储结果,这通常发生在对没有索引的列进行GROUP BY 时,或者ORDER BY里的列不都在索引里,需要添加合适的索引。
Using index 表示MySQL使用覆盖索引避免全表扫描,不需要再到表中进行二次查找数据,这是比较好的结果之一。注意不要和type中的index类型混淆。
Using where 通常是进行了全表/全索引扫描后再用WHERE子句完成结果过滤,需要添加合适的索引。
Impossible WHERE 对Where子句判断的结果总是false而不能选择任何数据,例如where 1=0,无需过多关注。
Select tables optimized away 使用某些聚合函数来访问存在索引的某个字段时,优化器会通过索引直接一次定位到所需要的数据行完成整个查询,例如MIN()\MAX(),这种也是比较好的结果之一。

explain代码案例

数据库准备

# 创建用户表
DROP TABLE IF EXISTS `user`;
CREATE TABLE `user`  (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `username` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '用户名称',
  `birthday` datetime(0) NULL DEFAULT NULL COMMENT '生日',
  `sex` char(1) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '性别',
  `address` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '地址',
  PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 8 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
-- ----------------------------
-- Records of user
-- ----------------------------
INSERT INTO `user` VALUES (1, '玉如', '2019-02-27 17:47:08', '男', '北京市西区');
INSERT INTO `user` VALUES (2, '晓兰', '2019-03-02 15:09:37', '男', '北京市东区');
INSERT INTO `user` VALUES (3, '花蝶', '2019-03-04 11:34:34', '女', '北京市青湖区');
INSERT INTO `user` VALUES (4, '兰咯', '2019-03-04 12:04:06', '女', '北京市青谱区');
INSERT INTO `user` VALUES (5, '咕咕', '2019-03-07 17:37:26', '女', '北京市红滩区');
INSERT INTO `user` VALUES (6, '嘻嘻', '2019-03-08 11:44:00', '男', '北京市新区');
INSERT INTO `user` VALUES (7, '萌萌', '2019-04-08 11:44:00', '男', '北京市西区');
-- 创建主键索引
CREATE UNIQUE INDEX UniqidIdx ON user (id);
-- 解释查询语句
EXPLAIN SELECT * FROM user WHERE id=3;
-- 创建名字索引
CREATE UNIQUE INDEX UniqidName ON user(username)
-- 使用EXPLAIN查询名字索引
EXPLAIN SELECT * FROM user WHERE username='玉如';
-- 使用DESCRIBE查询名字索引
DESCRIBE SELECT * FROM user WHERE username='玉如';

-- 探究查询结果字段
EXPLAIN SELECT * FROM user WHERE id=2;

EXPLAIN SELECT * FROM user WHERE id>3 GROUP BY username;


相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
19天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
118 9
|
21天前
|
存储 关系型数据库 MySQL
double ,FLOAT还是double(m,n)--深入解析MySQL数据库中双精度浮点数的使用
本文探讨了在MySQL中使用`float`和`double`时指定精度和刻度的影响。对于`float`,指定精度会影响存储大小:0-23位使用4字节单精度存储,24-53位使用8字节双精度存储。而对于`double`,指定精度和刻度对存储空间没有影响,但可以限制数值的输入范围,提高数据的规范性和业务意义。从性能角度看,`float`和`double`的区别不大,但在存储空间和数据输入方面,指定精度和刻度有助于优化和约束。
|
2月前
|
监控 关系型数据库 MySQL
MySQL自增ID耗尽应对策略:技术解决方案全解析
在数据库管理中,MySQL的自增ID(AUTO_INCREMENT)属性为表中的每一行提供了一个唯一的标识符。然而,当自增ID达到其最大值时,如何处理这一情况成为了数据库管理员和开发者必须面对的问题。本文将探讨MySQL自增ID耗尽的原因、影响以及有效的应对策略。
152 3
|
2月前
|
存储 关系型数据库 MySQL
MySQL 字段类型深度解析:VARCHAR(50) 与 VARCHAR(500) 的差异
在MySQL数据库中,`VARCHAR`类型是一种非常灵活的字符串存储类型,它允许存储可变长度的字符串。然而,`VARCHAR(50)`和`VARCHAR(500)`之间的差异不仅仅是长度的不同,它们在存储效率、性能和使用场景上也有所不同。本文将深入探讨这两种字段类型的区别及其对数据库设计的影响。
90 2
|
2月前
|
存储 关系型数据库 MySQL
PHP与MySQL动态网站开发深度解析####
本文作为技术性文章,深入探讨了PHP与MySQL结合在动态网站开发中的应用实践,从环境搭建到具体案例实现,旨在为开发者提供一套详尽的实战指南。不同于常规摘要仅概述内容,本文将以“手把手”的教学方式,引导读者逐步构建一个功能完备的动态网站,涵盖前端用户界面设计、后端逻辑处理及数据库高效管理等关键环节,确保读者能够全面掌握PHP与MySQL在动态网站开发中的精髓。 ####
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
87 2
|
3月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
87 0
|
3月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
68 0
|
12天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
12天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析

推荐镜像

更多