深入浅出带你玩转栈与队列——【数据结构】

简介: 深入浅出带你玩转栈与队列——【数据结构】

在前几期的学习中,我们学习了顺序表与链表,今天我们将学习一种新的数据结构——栈与队列。而栈与队列实际上就是链表的一种变形产物,但肯定会有许多结构上的不同。


现在就让我们进入栈和队列,看看它们的特点!!!

1.栈

1.1栈的概念及结构

栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。


压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶


出栈:栈的删除操作叫做出栈。出数据也在栈顶。

1.2栈的结构特征图

文字力量有时太过渺小,我们通过图解更清楚的了解栈的特点。

e0ee692eb70145d888c85f11e60d0787.png


5b45d44feed04ecf979b7884e92a0ac3.png

1.3栈的实现

栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的代价比较小。

1.3.1栈的初始化

void STInit(ST* ps)
{
  assert(ps);
  ps->a = NULL;
  ps->capacity = 0;
  ps->top = 0;
}

这里我们使用数组作为结构,更好的适用于栈的特征。但是这又与顺序表中的不同,顺序表在刚进入就进行了开辟空间,而我们栈的初始化先全部设为0。

1.3.2进栈

在进栈时,我们会遇到栈内存满的情况,所以我们必须进行判断(top 有效内容与 capacity容量是否相等),如果相等我们就进行realloc进行扩容即可。然后将需要放入栈的内容存入堆区,有效内容top++即可完成。如果内容开始为0,我们使用三元表达式直接扩容为4。

void STPush(ST* ps, STDataType x)
{
  assert(ps);
  if (ps->top == ps->capacity)
  {
    int newCapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;
    STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * newCapacity);
    if (tmp == NULL)
    {
      perror("realloc");
      exit(-1);
    }
    ps->a[ps->top] = x;
    ps->top++;
  }
}


注意:malloc与realloc都可以使用,当给予realloc一个指针时,功能完全相同

1.3.3出栈

出栈非常简单,只需要将top--,不去访问其内容即可。

void STPop(ST* ps)
{
  assert(ps);
  assert(ps->top > 0);
  --ps->top;
}

1.3.4销毁内存

销毁堆上内存也非常简单,只需free掉即可

void STDestroy(ST* ps)
{
  assert(ps);
  free(ps->a);
  ps->a = NULL;
  ps->top = ps->capacity = 0;
}


但是我们一定要用assert进行断言,防止传入空指针。

1.3.5判断栈是否为空

栈中是否插入内容,我们可以创建一个函数进行判断一下。返回值为bool类型,我们需要在头文件中加入#include<stdbool.h>才可以使用。

bool STEmpty(ST* ps)
{
  assert(ps);
  return ps->top == 0;
}

1.3.5栈底元素的读取

在读取栈底元素时,我们需要检查传入栈的指针是否正确以及栈中是否为空,两个必须都为真即可进行下面操作。

STDataType STTop(ST* ps)
{
  assert(ps);
  assert(ps->top > 0);
  return ps->a[ps->top - 1];
}

栈底元素就是top-1的内容,我们直接返回即可。

1.3.6栈中大小

当我们一直添加数据,需要了解栈中有多少个有效数据时,我们却束手无策,所以我们还需要一个能测出栈中大小函数。

int STSize(ST* ps)
{
  assert(ps);
  return ps->top;
}

1.4栈实现所有接口

我们需要了解的所有接口,可以放在头文件中:

// 下面是定长的静态栈的结构,实际中一般不实用,所以我们主要实现下面的支持动态增长的栈
typedef int STDataType;
#define N 10
typedef struct Stack
{
 STDataType _a[N];
 int _top; // 栈顶
}Stack;
// 支持动态增长的栈
typedef int STDataType;
typedef struct Stack
{
 STDataType* _a;
 int _top; // 栈顶
 int _capacity; // 容量
}Stack;
// 初始化栈
void StackInit(Stack* ps);
// 入栈
void StackPush(Stack* ps, STDataType data);
// 出栈
void StackPop(Stack* ps);
// 获取栈顶元素
STDataType StackTop(Stack* ps);
// 获取栈中有效元素个数
int StackSize(Stack* ps);
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0
int StackEmpty(Stack* ps);
// 销毁栈
void StackDestroy(Stack* ps); 

2.队列

2.1队列的概念

队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出 FIFO(First In First Out)

入队列:进行插入操作的一端称为队尾

出队列:进行删除操作的一端称为队头

2.2队列的结构

13ddd835d5c646b4b8af0b575603f977.png

2.3队列的实现

队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数 组头上出数据,效率会比较低。

image.png

2.3.1队列的接口总览

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<string.h>
typedef int QDataType;
typedef struct QueueNode
{
  struct QueueNode* next;
  QDataType data;
}QNode;
typedef struct Queue
{
  QNode* head;
  QNode* tail;
  int size;
}Que;
void QueueInit(Que* pq);
void QueueDestroy(Que* pq);
void QueuePush(Que* pq, QDataType x);
void QueuePop(Que* pq);
QDataType QueueFront(Que* pq);
QDataType QueueBack(Que* pq);
bool QueueEmpty(Que* pq);
int QueueSize(Que* pq);


在这里使用单链表,作为队列结构。队列特点就是先进先出,但是单链表比较适合头插头删,并不适合尾删,所以我们创建另一个结构体记录尾结点和头节点,这样也可以避免使用二级指针增加难度。

2.3.2队列的初始化

初始化我们先把所有内容设置成NULL或0即可

void QueueInit(Que* pq)
{
  pq->head = pq->tail = NULL;
  pq->size = 0;
}

2.3.3入队

入队其实就是链表中的尾插!!!

void QueuePush(Que* pq, QDataType x)
{
  assert(pq);
  QNode* newnode = (QNode*)malloc(sizeof(QNode));
  if (newnode == NULL)
  {
    perror("malloc");
    exit(-1);
  }
  newnode->data = x;
  newnode->next = NULL;
  if (pq->tail == NULL)
  {
    pq->head = pq->tail = newnode;
  }
  else
  {
    pq->tail->next = newnode;
    pq->tail = newnode;
  }
  pq->size++;
}


我们一定要记得将记录首尾的结构体进行赋值,分情况进行,不要忘记更新哦!!!

2.3.4出队

出队就是链表中的头删

void QueuePop(Que* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  if (pq->head->next == NULL)
  {
    free(pq->head);
    pq->head = pq->tail = NULL;
  }
  else
  {
    QNode* next = pq->head->next;
    free(pq->head);
    pq->head = next;
  }
  pq->size--;
}


我们一定要注意当删到只有一个内容节点时,要处理尾指针指向NULL。

2.3.5获取对头元素

只需要判断队列存指针正确且不为空,直接返回head指向的data即可。 QueueEmpty函数就是判断队列是否为空的函数,在后面有代码展示!!!

QDataType QueueFront(Que* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  return ps->head->data;
}

2.3.6获取对尾元素

尾元素获取与首元素基本相同。

QDataType QueueBack(Que* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  return ps->tail->data;
}

2.3.7判断是否为空

bool QueueEmpty(Que* pq)
{
  assert(pq);
  return ps->tail == NULL;
}

2.3.8队列销毁

一定不要忘记创建的存放头尾节点的指针结构体,也要将它们置空

void QueueDestroy(Que* pq)
{
  assert(pq);
  QNode* cur = pq->head;
  while (cur)
  {
    QNode* next = cur->next;
    free(cur);
    cur = next;
  }
  pq->head = ps->tail = NULL;
  pq->size = 0;
}

3.拓展内容

实际中我们有时还会使用一种队列叫循环队列。如操作系统课程讲解生产者消费者模型 时可以就会使用循环队列。环形队列可以使用数组实现,也可以使用循环链表实现。

bd822a9d843e4919a3b16200a0a35444.png

a98b87ff813749b9bd0e2c285aac7011.png

栈、队列、顺序表、链表都是相似但不同的数据结构,我们在学习时一定要了解其中的差异,这样才能在以后更好的应用!!!


以上就是本节全部内容,感谢大家耐心观看,你们的三连支持是博主最大创作动力。

目录
相关文章
|
7月前
|
前端开发 Java
java实现队列数据结构代码详解
本文详细解析了Java中队列数据结构的实现,包括队列的基本概念、应用场景及代码实现。队列是一种遵循“先进先出”原则的线性结构,支持在队尾插入和队头删除操作。文章介绍了顺序队列与链式队列,并重点分析了循环队列的实现方式以解决溢出问题。通过具体代码示例(如`enqueue`入队和`dequeue`出队),展示了队列的操作逻辑,帮助读者深入理解其工作机制。
221 1
|
5月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
102 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
|
10月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
460 77
|
9月前
|
算法 调度 C++
STL——栈和队列和优先队列
通过以上对栈、队列和优先队列的详细解释和示例,希望能帮助读者更好地理解和应用这些重要的数据结构。
219 11
|
9月前
|
DataX
☀☀☀☀☀☀☀有关栈和队列应用的oj题讲解☼☼☼☼☼☼☼
### 简介 本文介绍了三种数据结构的实现方法:用两个队列实现栈、用两个栈实现队列以及设计循环队列。具体思路如下: 1. **用两个队列实现栈**: - 插入元素时,选择非空队列进行插入。 - 移除栈顶元素时,将非空队列中的元素依次转移到另一个队列,直到只剩下一个元素,然后弹出该元素。 - 判空条件为两个队列均为空。 2. **用两个栈实现队列**: - 插入元素时,选择非空栈进行插入。 - 移除队首元素时,将非空栈中的元素依次转移到另一个栈,再将这些元素重新放回原栈以保持顺序。 - 判空条件为两个栈均为空。
|
10月前
|
存储 C++ 索引
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
【数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】初始化队列、销毁队列、判断队列是否为空、进队列、出队列等。本关任务:编写一个程序实现环形队列的基本运算。(6)出队列序列:yzopq2*(5)依次进队列元素:opq2*(6)出队列序列:bcdef。(2)依次进队列元素:abc。(5)依次进队列元素:def。(2)依次进队列元素:xyz。开始你的任务吧,祝你成功!(4)出队一个元素a。(4)出队一个元素x。
385 13
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
|
10月前
|
C++
【C++数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】
【数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】(1)遇到左括号:进栈Push()(2)遇到右括号:若栈顶元素为左括号,则出栈Pop();否则返回false。(3)当遍历表达式结束,且栈为空时,则返回true,否则返回false。本关任务:编写一个程序利用栈判断左、右圆括号是否配对。为了完成本关任务,你需要掌握:栈对括号的处理。(1)遇到左括号:进栈Push()开始你的任务吧,祝你成功!测试输入:(()))
227 7
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
997 9
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
267 59

热门文章

最新文章