【C++】模板进阶:非类型模板参数&模板的特化&模板分离编译(上)

简介: 【C++】模板进阶:非类型模板参数&模板的特化&模板分离编译(上)

在之前的博客中我们初次接触到了泛型编程和模板的概念 【C++】模板初阶,当时只讲了一些基本的用法,现在做一些补充


1. 非类型模板参数


模板参数分为类型形参非类型形参

类型形参:出现在模板参数列表中,跟在class或者typename之后的参数类型的名称

非类型形参:就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当作常量来使用。

注意:1. 这个常量的类型只能是整形家族,浮点数、类对象以及字符串是不允许作为非类型模板参数的。

2. 非类型模板参数必须要在编译节点就能确认结果


举个例子:

假设我们现在定义一个模板类型的静态数组

//按照C语言的方法,需要#define一个容量
#define N 10;
template<class T>
class Array
{
public:
  //...
private:
  T _a[N];
};
//但是在C++中,就可以使用非类型模板参数
template<class T, size_t N = 10>//这里也可以像函数参数一样给缺省值
class Array
{
public:
  //...
private:
  T _a[N];
};


补充:array

在C++11中,新增了一个容器:array

08b2a360e5e42eae66592c3d96d8ec72.png

这个容器在底层和静态数组没有差别,是一个存在栈上的固定大小的顺序容器array使用文档

828cbbacd0492d2c24df002bcff9801e.png

这是array的一些接口,由于是静态数组,所以不支持push_back等操作。

那为什么会有array这个类的出现呢?在array出现之前,数组不是用的也挺好?这是因为C语言对于数组越界的处理是抽查,不是很严格,实现array用来代替掉C语言的静态数组,增强对数组越界的检查等操作。除此之外,把静态数组也用容器封装起来,体现了C++的封装性,提高整个程序的可读性、抽象性、兼容性。


2. 模板的特化


1. 概念

通常情况下,使用模板可以实现一些与类型无关的代码,但对于一些特殊类型的可能会得到一些错误的结果,需要特殊处理,比如:实现了一个专门用来进行小于比较的函数模板

void Test()
{
  cout << Less(1, 2) << endl; // 可以比较,结果正确
  Date d1(2023, 4, 30);
  Date d2(2023, 5, 1);
  cout << Less(d1, d2) << endl; // 可以比较,结果正确
  Date* p1 = new Date(2023, 4, 30);
  Date* p2 = new Date(2023, 5, 1);
  cout << Less(p1, p2) << endl; // 可以比较,结果错误
  cout << p1 << endl;
  cout << p2 << endl;
}


66a20859658d2a7bac4f2c3201b14e68.png

可以看到,在大多数情况下,Less都能正常运转,但是在某些特殊的场景下,由于比较的逻辑有些许不同,所以最终没办法给出正确答案,此时,我们想对这种特殊情况进行特殊处理,就要对模板进行特化,即在原模版的基础上,针对特殊类型进行特殊化的处理


模板特化分为函数模板特化和类模板特化


2. 函数模板特化

函数模板特化的步骤

  1. 必须要先有一个基础的函数模板
  2. 关键字template后面跟一对空的尖括号<>
  3. 函数名后面跟一对尖括号,尖括号里面指定需要特化的类型
  4. 函数形参表必须要和函数模板的基础参数类型完全相同,否则会报一堆奇怪的错误


针对上述的示例,我们可以进行以下的模板特化

template<class T>
bool Less(T left, T right)
{
  cout << "Less(T left, T right)" << endl;//这里为了方便观察,我们对函数调用进行一下标识
  return left < right;
}
//对Less函数模板进行特化
template<>
bool Less<Date*>(Date* left, Date* right)
{
  cout << "Less<Date*>(Date* left, Date* right)" << endl;
  return *left < *right;
}


59ba35d29963b14a6493f4898dc014f2.png

但是,对于这种情况,我们可以直接使用函数重载的方式来解决,重载一个或者多个形参即可。所以一般情况下如果函数模板遇到不能处理或者处理有误的类型,为了实现简单通常都是将该函数直接给出 (函数重载)

template<class T>
bool Less(T left, T right)
{
  cout << "Less(T left, T right)" << endl;
  return left < right;
}
//函数重载
bool Less(Date* left, Date* right)
{
  cout << "Less(Date* left, Date* right)" << endl;
  return *left < *right;
}


1fd1a0073db5da652ed6791d7dfff790.png

如上,使用函数重载的方式反而更加清晰简明,所以一般来说使用到函数模板特化的情况很少,对于普通情况,不建议使用函数模板特化

目录
打赏
0
0
0
0
3
分享
相关文章
为什么C/C++编译腰要先完成汇编
C/C++ 编译过程中先生成汇编语言是历史、技术和实践的共同选择。历史上,汇编语言作为成熟的中间表示方式,简化了工具链;技术上,分阶段编译更高效,汇编便于调试和移植;实践中,保留汇编阶段降低了复杂度,增强了可移植性和优化能力。即使在现代编译器中,汇编仍作为重要桥梁,帮助开发者更好地理解和优化代码。
65 25
为什么C/C++编译腰要先完成汇编
告别头文件,编译效率提升 42%!C++ Modules 实战解析 | 干货推荐
本文中,阿里云智能集团开发工程师李泽政以 Alinux 为操作环境,讲解模块相比传统头文件有哪些优势,并通过若干个例子,学习如何组织一个 C++ 模块工程并使用模块封装第三方库或是改造现有的项目。
450 56
【C++11】可变模板参数详解
本文详细介绍了C++11引入的可变模板参数,这是一种允许模板接受任意数量和类型参数的强大工具。文章从基本概念入手,讲解了可变模板参数的语法、参数包的展开方法,以及如何结合递归调用、折叠表达式等技术实现高效编程。通过具体示例,如打印任意数量参数、类型安全的`printf`替代方案等,展示了其在实际开发中的应用。最后,文章讨论了性能优化策略和常见问题,帮助读者更好地理解和使用这一高级C++特性。
164 4
简述 C、C++程序编译的内存分配情况
在C和C++程序编译过程中,内存被划分为几个区域进行分配:代码区存储常量和执行指令;全局/静态变量区存放全局变量及静态变量;栈区管理函数参数、局部变量等;堆区则用于动态分配内存,由程序员控制释放,共同支撑着程序运行时的数据存储与处理需求。
323 22
Linux c/c++之多文档编译
这篇文章介绍了在Linux操作系统下使用gcc编译器进行C/C++多文件编译的方法和步骤。
81 0
Linux c/c++之多文档编译
【C++篇】领略模板编程的进阶之美:参数巧思与编译的智慧
【C++篇】领略模板编程的进阶之美:参数巧思与编译的智慧
127 2
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
40 16
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。

热门文章

最新文章

相关实验场景

更多