Java 并发编程:解析多种队列类型的用途 Queue Nice !!!

简介: Java 并发编程:解析多种队列类型的用途 Queue Nice !!!

前言


Java 中的队列有很多,例如:ArrayBlockingQueueLinkedBlockingQueuePriorityQueueDelayQueueSynchronousQueue 等,那它们的作用是什么?又是如何分类的呢?


其实 Java 中的这些队列可以从不同的维度进行分类,例如可以从阻塞和非阻塞进行分类,也可以从有界和无界进行分类,而本文将从队列的功能上进行分类,例如:优先队列、普通队列、双端队列、延迟队列等。


虽然本文的重点是从功能上对队列进行解读,但其它分类也是 Java 中的重要概念,所以我们先来了解一下它们。


阻塞队列和非阻塞队列


阻塞队列(Blocking Queue)提供了可阻塞的 put 和 take 方法,它们与可定时的 offer 和 poll 是等价的。如果队列满了 put 方法会被阻塞等到有空间可用再将元素插入;如果队列是空的,那么 take 方法也会阻塞,直到有元素可用。当队列永远不会被充满时,put 方法和 take 方法就永远不会阻塞。

我们可以从队列的名称中知道此队列是否为阻塞队列,阻塞队列中包含 BlockingQueue 关键字,比如以下这些:


  • ArrayBlockingQueue
  • LinkedBlockingQueue
  • PriorityBlockingQueue
  • .......

阻塞队列功能演示


接下来我们来演示一下当阻塞队列的容量满了之后会怎样,示例代码如下:

public class BlockingTest {
    public static void main(String[] args) throws InterruptedException {
        // 创建一个长度为 5 的阻塞队列
        ArrayBlockingQueue q1 = new ArrayBlockingQueue(5);
        // 新创建一个线程执行入列
        new Thread(() -> {
            // 循环 10 次
            for (int i = 0; i < 10; i++) {
                try {
                    q1.put(i);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(new Date() + " | ArrayBlockingQueue Size:" + q1.size());
            }
            System.out.println(new Date() + " | For End.");
        }).start();
        // 新创建一个线程执行出列
        new Thread(() -> {
            for (int i = 0; i < 5; i++) {
                try {
                    // 休眠 1S
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                if (!q1.isEmpty()) {
                    try {
                        q1.take(); // 出列
                        System.out.println("出列");
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }).start();
    }
}


以上代码的执行结果如下:

从上述结果可以看出,当 ArrayBlockingQueue 队列满了之后就会进入阻塞,当过了 1 秒有元素从队列中移除之后,才会将新的元素入列。




非阻塞队列


非阻塞队列也就是普通队列,它的名字中不会包含 BlockingQueue 关键字,并且它不会包含 put 和 take 方法,当队列满之后如果还有新元素入列会直接返回错误,并不会阻塞的等待着添加元素,如下图所示:

非阻塞队列的典型代表是 ConcurrentLinkedQueuePriorityQueue




有界队列和无界队列


有界队列:是指有固定大小的队列,比如设定了固定大小的 ArrayBlockingQueue,又或者大小为 0 的 SynchronousQueue

无界队列:指的是没有设置固定大小的队列,但其实如果没有设置固定大小也是有默认值的,只不过默认值是 Integer.MAX_VALUE,当然实际的使用中不会有这么大的容量(超过 Integer.MAX_VALUE),所以从使用者的角度来看相当于 “无界”的。




按功能分类


接下来就是本文的重点了,我们以功能来划分一下队列,它可以被分为:普通队列、优先队列、双端队列、延迟队列、其他队列等,接下来我们分别来看。



1.普通队列

普通队列(Queue)是指实现了先进先出的基本队列,例如 ArrayBlockingQueueLinkedBlockingQueue,其中 ArrayBlockingQueue 是用数组实现的普通队列,如下图所示:

LinkedBlockingQueue 是使用链表实现的普通队列,如下图所示:




常用方法


普通队列中的常用方法有以下这些:


  • offer():添加元素,如果队列已满直接返回 false,队列未满则直接插入并返回 true;
  • poll():删除并返回队头元素,当队列为空返回 null;
  • add():添加元素,此方法是对 offer 方法的简单封装,如果队列已满,抛出 IllegalStateException 异常;
  • remove():直接删除队头元素;
  • put():添加元素,如果队列已经满,则会阻塞等待插入;
  • take():删除并返回队头元素,当队列为空,则会阻塞等待;
  • peek():查询队头元素,但不会进行删除;
  • element():对 peek 方法进行简单封装,如果队头元素存在则取出并不删除,如果不存在抛出 NoSuchElementException 异常。

注意:一般情况下 offer() 和 poll() 方法配合使用,put() 和 take() 阻塞方法配合使用,add() 和 remove() 方法会配合使用,程序中常用的是 offer() 和 poll() 方法,因此这两个方法比较友好,不会报错


接下来我们以 LinkedBlockingQueue 为例,演示一下普通队列的使用:

public class LinkedBlockingQueueTest {
    public static void main(String[] args) {
        LinkedBlockingQueue queue = new LinkedBlockingQueue();
        queue.offer("Hello");
        queue.offer("Java");
        queue.offer("Myxq");
        while (!queue.isEmpty()) {
            System.out.println(queue.poll());
        }
    }
}




2.双端队列


双端队列(Deque)是指队列的头部和尾部都可以同时入队和出队的数据结构,如下图所示:

接下来我们来演示一下双端队列 LinkedBlockingDeque 的使用:

public class LinkedBlockingDequeTest {
    public static void main(String[] args) {
        // 创建一个双端队列
        LinkedBlockingDeque deque = new LinkedBlockingDeque();
        deque.offer("offer"); // 插入首个元素
        deque.offerFirst("offerFirst"); // 队头插入元素
        deque.offerLast("offerLast"); // 队尾插入元素
        while (!deque.isEmpty()) {
            // 从头遍历打印
            System.out.println(deque.poll());
        }
    }
}

以上代码的执行结果如下:




3.优先队列


优先队列(PriorityQueue)是一种特殊的队列,它并不是先进先出的,而是优先级高的元素先出队。

优先队列是根据二叉堆实现的,二叉堆的数据结构如下图所示:

二叉堆分为两种类型:一种是最大堆一种是最小堆。以上展示的是最大堆,在最大堆中,任意一个父节点的值都大于等于它左右子节点的值。


因为优先队列是基于二叉堆实现的,因此它可以将优先级最好的元素先出队。


接下来我们来演示一下优先队列的使用:

public class PriorityQueueTest {
        // 自定义的实体类
        static class Viper {
            private int id; // id
            private String name; // 名称
            private int level; // 等级
            public Viper(int id, String name, int level) {
                this.id = id;
                this.name = name;
                this.level = level;
            }
            public int getId() {
                return id;
            }
            public void setId(int id) {
                this.id = id;
            }
            public String getName() {
                return name;
            }
            public void setName(String name) {
                this.name = name;
            }
            public int getLevel() {
                return level;
            }
            public void setLevel(int level) {
                this.level = level;
            }
        }
        //优先队列的出队是不考虑入队顺序的,它始终遵循的是优先级高的元素先出队。
        public static void main(String[] args) {
            PriorityQueue queue = new PriorityQueue(10, new Comparator<Viper>() {
                @Override
                public int compare(Viper v1, Viper v2) {
                    // 设置优先级规则(倒序,等级越高权限越大)
                    return v2.getLevel() - v1.getLevel();
                }
            });
            // 构建实体类
            Viper v1 = new Viper(1, "张三", 1);
            Viper v2 = new Viper(2, "李四", 5);
            Viper v3 = new Viper(3, "王五", 3);
            // 入列
            queue.offer(v1);
            queue.offer(v2);
            queue.offer(v3);
            while (!queue.isEmpty()) {
                // 遍历名称
                Viper item = (Viper) queue.poll();
                System.out.println("Name:" + item.getName() +
                        " Level:" + item.getLevel());
            }
        }
}


以上代码的执行结果如下:

从上述结果可以看出,优先队列的出队是不考虑入队顺序的,它始终遵循的是优先级高的元素先出队




4.延迟队列


延迟队列(DelayQueue)是基于优先队列 PriorityQueue 实现的,它可以看作是一种以时间为度量单位的优先的队列,当入队的元素到达指定的延迟时间之后方可出队。

我们来演示一下延迟队列的使用:

public class CustomDelayQueue {
    // 延迟消息队列
    private static DelayQueue delayQueue = new DelayQueue();
    static class MyDelay implements Delayed {
        // 延迟截止时间(单位:毫秒)
        long delayTime = System.currentTimeMillis();
        private String msg;
        public String getMsg() {
            return msg;
        }
        public void setMsg(String msg) {
            this.msg = msg;
        }
        /**
         * 初始化
         * @param delayTime 设置延迟执行时间
         * @param msg       执行的消息
         */
        public MyDelay(long delayTime, String msg) {
            this.delayTime = (this.delayTime + delayTime);
            this.msg = msg;
        }
        // 获取剩余时间
        @Override
        public long getDelay(TimeUnit unit) {
            return unit.convert(delayTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS);
        }
        // 队列里元素的排序依据
        @Override
        public int compareTo(Delayed o) {
            if (this.getDelay(TimeUnit.MILLISECONDS) > o.getDelay(TimeUnit.MILLISECONDS)) {
                return 1;
            } else if (this.getDelay(TimeUnit.MILLISECONDS) < o.getDelay(TimeUnit.MILLISECONDS)) {
                return -1;
            } else {
                return 0;
            }
        }
        @Override
        public String toString() {
            return this.msg;
        }
    }
    // 生产者
    public static void producer() {
        // 添加消息
        delayQueue.put(new MyDelay(1000, "消息1"));
        delayQueue.put(new MyDelay(3000, "消息2"));
    }
    public static void main(String[] args) throws InterruptedException {
        producer(); // 调用生产者
        consumer(); // 调用消费者
    }
    // 消费者
    public static void consumer() throws InterruptedException {
        System.out.println("开始执行时间:" +
                DateFormat.getDateTimeInstance().format(new Date()));
        while (!delayQueue.isEmpty()) {
            System.out.println(delayQueue.take());
        }
        System.out.println("结束执行时间:" +
                DateFormat.getDateTimeInstance().format(new Date()));
    }
}

以上代码的执行结果如下:

从上述结束执行时间和开始执行时间可以看出,消息 1 和消息 2 都正常实现了延迟执行的功能。



5.其他队列


在 Java 的队列中有一个比较特殊的队列 SynchronousQueue,它的特别之处在于它内部没有容器,每次进行 put() 数据后(添加数据),必须等待另一个线程拿走数据后才可以再次添加数据,它的使用示例如下:

public class SynchronousQueueTest {
    public static void main(String[] args) {
        SynchronousQueue queue = new SynchronousQueue();
        // 入队
        new Thread(() -> {
            for (int i = 0; i < 3; i++) {
                try {
                    System.out.println(DateFormat.getDateTimeInstance().format(new Date())+" Data " + i+"元素入队");
                    queue.put("Data " + i);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }).start();
        // 出队
        new Thread(() -> {
            while (true) {
                try {
                    Thread.sleep(1000);
                    System.out.println(DateFormat.getDateTimeInstance().format(new Date())+" "+ queue.take()+"元素出队");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }
}

以上代码的执行结果如下:

从上述结果可以看出,当有一个元素入队之后,只有等到另一个线程将元素出队之后,新的元素才能再次入队。



总结


本文讲了 Java 中的 5 种队列:普通队列、双端队列、优先队列、延迟队列、其他队列。其中普通队列的典型代表为 ArrayBlockingQueue 和 LinkedBlockingQueue

双端队列的代表为 LinkedBlockingDeque

优先队列的代表为 PriorityQueue

延迟队列的代表为 DelayQueue

内部没有容器的其他队列 SynchronousQueue




最后


本期结束咱们下次再见👋~

🌊 关注我不迷路,如果本篇文章对你有所帮助,或者你有什么疑问,欢迎在评论区留言,我一般看到都会回复的。大家点赞支持一下哟~ 💗

相关文章
|
1月前
|
缓存 安全 Java
Java并发性能优化|读写锁与互斥锁解析
本文深入解析Java中两种核心锁机制——互斥锁与读写锁,通过概念对比、代码示例及性能测试,揭示其适用场景。互斥锁适用于写多或强一致性场景,读写锁则在读多写少时显著提升并发性能。结合锁降级、公平模式等高级特性,助你编写高效稳定的并发程序。
87 0
|
1月前
|
安全 Oracle Java
JAVA高级开发必备·卓伊凡详细JDK、JRE、JVM与Java生态深度解析-形象比喻系统理解-优雅草卓伊凡
JAVA高级开发必备·卓伊凡详细JDK、JRE、JVM与Java生态深度解析-形象比喻系统理解-优雅草卓伊凡
152 0
JAVA高级开发必备·卓伊凡详细JDK、JRE、JVM与Java生态深度解析-形象比喻系统理解-优雅草卓伊凡
|
25天前
|
算法 Java 测试技术
零基础学 Java: 从语法入门到企业级项目实战的详细学习路线解析
本文为零基础学习者提供完整的Java学习路线,涵盖语法基础、面向对象编程、数据结构与算法、多线程、JVM原理、Spring框架、Spring Boot及项目实战,助你从入门到进阶,系统掌握Java编程技能,提升实战开发能力。
71 0
|
2月前
|
安全 Java API
Java 集合高级应用与实战技巧之高效运用方法及实战案例解析
本课程深入讲解Java集合的高级应用与实战技巧,涵盖Stream API、并行处理、Optional类、现代化Map操作、不可变集合、异步处理及高级排序等核心内容,结合丰富示例,助你掌握Java集合的高效运用,提升代码质量与开发效率。
182 0
|
2月前
|
安全 JavaScript Java
java Web 项目完整案例实操指南包含从搭建到部署的详细步骤及热门长尾关键词解析的实操指南
本项目为一个完整的JavaWeb应用案例,采用Spring Boot 3、Vue 3、MySQL、Redis等最新技术栈,涵盖前后端分离架构设计、RESTful API开发、JWT安全认证、Docker容器化部署等内容,适合掌握企业级Web项目全流程开发与部署。
127 0
|
10月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
255 2
|
6月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
576 29
|
6月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
174 4
|
6月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
6月前
|
移动开发 前端开发 JavaScript
从入门到精通:H5游戏源码开发技术全解析与未来趋势洞察
H5游戏凭借其跨平台、易传播和开发成本低的优势,近年来发展迅猛。接下来,让我们深入了解 H5 游戏源码开发的技术教程以及未来的发展趋势。

热门文章

最新文章

推荐镜像

更多
  • DNS