大数据技术之Clickhouse---入门篇---安装

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据技术之Clickhouse---入门篇---安装

                                                                                 

                       星光下的赶路人star的个人主页

                      知世故而不世故 是善良的成熟


文章目录



1、ClickHouse的安装


1.1 准备工作


1.1.1 确定防火墙处于关闭状态


1.1.2 CentOS取消打开文件数限制


1、在 hadoop102 的 /etc/security/limits.conf 文件的末尾加入以下内容

* soft nofile 65536
* hard nofile 65536
* soft nproc 131072
* hard nproc 131072

2、在 hadoop102 的/etc/security/limits.d/20-nproc.conf 文件的末尾加入以下内容

* soft nofile 65536
* hard nofile 65536
* soft nproc 131072
* hard nproc 131072

3、执行同步操作(和其他节点同步一下)


1.1.3 安装依赖(所有节点都进行依赖安装)

sudo yum install -y libtool
 sudo yum install -y *unixODBC*
• 1
• 2
• 3


1.1.4 CentOS取消SELINUX


1、修改/etc/selinux/config 中的 SELINUX=disabled

SELINUX=disabled
• 1


2、执行同步操作

3、重启三台服务器


1.2 单机安装


官网:https://clickhouse.tech/

下载地址:http://repo.red-soft.biz/repos/clickhouse/stable/el7/


1.2.1 在 hadoop102 的/opt/software 下创建 clickhouse 目录

mkdir clickhouse
• 1


1.2.2 将文件上传到hadoop102 的/opt/software下(文件下面链接自取)


链接:https://pan.baidu.com/s/1NDxqVy9j23emnYd6TnzuiA

提取码:zhm6


1.2.3 将安装文件同步到其他节点


1.2.4 分别在所有机子上安装这 4 个 rpm 文件

sudo rpm -ivh *.rpm
• 1

1.2.5 修改配置文件

sudo vim /etc/clickhouse-server/config.xml
• 1

1、把 <listen_host>::</listen_host> 的注释打开,这样的话才能让 ClickHouse 被除本

机以外的服务器访问。

2、分发配置文件

在这个文件中,有 ClickHouse 的一些默认路径配置,比较重要的

数据文件路径: /var/lib/clickhouse/

日志文件路径:/var/log/clickhouse-server/clickhouse-server.log


1.2.6 启动Server


sudo systemctl start clickhouse-server
• 1


1.2.7 所有机器上关闭开机自启


sudo systemctl disable clickhouse-server
• 1


1.2.8 使用Client连接Server


clickhouse-client -m
# -m :可以在命令窗口输入多行命令
• 1
• 2

                                                                                     

                                                                        您的支持是我创作的无限动力

                                                                                     

                      希望我能为您的未来尽绵薄之力

                                                                                     

                    如有错误,谢谢指正若有收获,谢谢赞美

相关文章
|
28天前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
16天前
|
存储 分布式计算 数据可视化
大数据常用技术与工具
【10月更文挑战第16天】
63 4
|
28天前
|
存储 数据采集 监控
大数据技术:开启智能决策与创新服务的新纪元
【10月更文挑战第5天】大数据技术:开启智能决策与创新服务的新纪元
|
29天前
|
消息中间件 分布式计算 关系型数据库
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
38 0
|
2天前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
10 3
|
2天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
11 2
|
5天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
29 1
|
7天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
33 2
|
7天前
|
存储 SQL Docker
ClickHouse入门指南:快速搭建与使用
【10月更文挑战第26天】在大数据时代,如何高效地处理海量数据成为了许多企业和开发者的关注点。ClickHouse 是一个开源的列式数据库管理系统(Column-Oriented DBMS),以其出色的查询性能和高并发能力,在数据分析领域迅速崛起。本文将从一个初学者的角度出发,详细介绍如何快速上手 ClickHouse,涵盖从环境搭建到基础操作的全过程。
34 3
|
7天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
27 1