【MySQL】七种SQL优化方式 你知道几条(下)

本文涉及的产品
RDS AI 助手,专业版
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: 3.order by优化MySQL 的排序,有两种方式:Using filesort : 通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区 sort

3.order by优化

MySQL的排序,有两种方式:

Using filesort : 通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort

buffer 中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序。

Using index : 通过有序索引顺序扫描直接返回有序数据,这种情况即为 using index ,不需要

额外排序,操作效率高。

对于以上的两种排序方式, Using index 的性能高,而 Using filesort 的性能低,我们在优化排序

操作时,尽量要优化为 Using index 。

接下来,我们来做一个测试:

A. 数据准备把之前测试时,为tb_user表所建立的部分索引直接删除掉

drop index idx_user_phone on tb_user;
drop index idx_user_phone_name on tb_user;
drop index idx_user_name on tb_user;

38121091073f4940972140ecca8a53ef.png

B. 执行排序SQL

explain select id,age,phone from tb_user order by age ;

9b3341cd447349db953a8fb28d25f78b.png

explain select id,age,phone from tb_user order by age, phone ;

由于 age, phone 都没有索引,所以此时再排序时,出现Using filesort, 排序性能较低。

C. 创建索引

1. -- 创建索引
2. create index idx_user_age_phone_aa on tb_user(age,phone);

D. 创建索引后,根据age, phone进行升序排序

explain select id,age,phone from tb_user order by age; 1

6eb6abcdf0f04a50857bd3ffc49ef168.png

explain select id,age,phone from tb_user order by age , phone; 1

建立索引之后,再次进行排序查询,就由原来的Using filesort, 变为了 Using index,性能

就是比较高的了。

E. 创建索引后,根据age, phone进行降序排序

 

explain select id,age,phone from tb_user order by age desc , phone desc ;

也出现 Using index , 但是此时 Extra 中出现了 Backward index scan ,这个代表反向扫描索

引,因为在 MySQL 中我们创建的索引,默认索引的叶子节点是从小到大排序的,而此时我们查询

排序时,是从大到小,所以,在扫描时,就是反向扫描,就会出现 Backward index scan 。 在

MySQL8 版本中,支持降序索引,我们也可以创建降序索引。

F. 根据 phone , age 进行升序排序, phone 在前, age 在后。

explain select id,age,phone from tb_user order by phone , age;

排序时,也需要满足最左前缀法则 , 否则也会出现 filesort 。因为在创建索引的时候, age 是第一个

字段, phone 是第二个字段,所以排序时,也就该按照这个顺序来,否则就会出现 Using filesort。

F. 根据 age, phone 进行降序一个升序,一个降序

explain select id,age,phone from tb_user order by age asc , phone desc ;

因为创建索引时,如果未指定顺序,默认都是按照升序排序的,而查询时,一个升序,一个降序,

此时就会出现Using filesort

为了解决上述的问题,我们可以创建一个索引,这个联合索引中 age 升序排序,phone 倒序排

序。

G. 创建联合索引(age 升序排序,phone 倒序排序)

 

create index idx_user_age_phone_ad on tb_user(age asc ,phone desc);

545d452ef5f14339a6aa83f7a716a6be.pngH. 然后再次执行如下SQL

explain select id,age,phone from tb_user order by age asc , phone desc ;

升序/降序联合索引结构图示:

57773a406db84906a9993a1fc68c2e0e.png

由上述的测试 , 我们得出 order by 优化原则 :

A. 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。

B. 尽量使用覆盖索引。

C. 多字段排序 , 一个升序一个降序,此时需要注意联合索引在创建时的规则( ASC/DESC )。

D. 如果不可避免的出现 filesort ,大数据量排序时,可以适当增大排序缓冲区大小

sort_buffer_size( 默认 256k) 。

4.group by优化

分组操作,我们主要来看看索引对于分组操作的影响。

首先我们先将 tb_user 表的索引全部删除掉 。

drop index idx_user_pro_age_sta on tb_user;
drop index idx_email_5 on tb_user;
drop index idx_user_age_phone_aa on tb_user;
drop index idx_user_age_phone_ad on tb_user;

1a00826d16b04168877f30f85952afbd.png

接下来,在没有索引的情况下,执行如下SQL,查询执行计划:

explain select profession , count(*) from tb_user group by profession ;

fa79c0b10c67479685f6dfcecf3027a3.png

然后,我们在针对于 profession age status 创建一个联合索引。

create index idx_user_pro_age_sta on tb_user(profession , age , status);

紧接着,再执行前面相同的SQL查看执行计划。

explain select profession , count(*) from tb_user group by profession ;

f2a3c797ab474234a5b68ea8ba1cae8e.png

再执行如下的分组查询SQL,查看执行计划:

我们发现,如果仅仅根据 age 分组,就会出现 Using temporary ;而如果是 根据

profession,age 两个字段同时分组,则不会出现 Using temporary 。原因是因为对于分组操作,

在联合索引中,也是符合最左前缀法则的。

所以,在分组操作中,我们需要通过以下两点进行优化,以提升性能:

A. 在分组操作时,可以通过索引来提高效率。

B. 分组操作时,索引的使用也是满足最左前缀法则的。

5.limit优化

在数据量比较大时,如果进行limit分页查询,在查询时,越往后,分页查询效率越低。

我们一起来看看执行limit分页查询耗时对比:

b197d499a96141c58732fb49120cc292.png

通过测试我们会看到,越往后,分页查询效率越低,这就是分页查询的问题所在。

因为,当在进行分页查询时,如果执行 limit 2000000,10 ,此时需要 MySQL 排序前 2000010 记

录,仅仅返回 2000000 - 2000010 的记录,其他记录丢弃,查询排序的代价非常大 。

优化思路 : 一般分页查询时,通过创建 覆盖索引 能够比较好地提高性能,可以通过覆盖索引加子查

询形式进行优化。

1. explain select * from tb_sku t , (select id from tb_sku order by id
2. limit 2000000,10) a where t.id = a.id;

6.count优化

6.1概述

select count(*) from tb_user ;

在之前的测试中,我们发现,如果数据量很大,在执行 count 操作时,是非常耗时的。

MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个

数,效率很高; 但是如果是带条件的 count , MyISAM 也慢。

InnoDB 引擎就麻烦了,它执行 count(*) 的时候,需要把数据一行一行地从引擎里面读出

来,然后累积计数。

如果说要大幅度提升 InnoDB 表的 count 效率,主要的优化思路:自己计数 ( 可以借助于 redis 这样的

数据库进行, 但是如果是带条件的 count 又比较麻烦了 )  。

6.2count用法

count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是

NULL,累计值就加 1,否则不加,最后返回累计值。

用法:count*)、count(主键)、count(字段)、count(数字)


按照效率排序的话,count(字段) < count(主键 id) < count(1) ≈ count(*),所以尽

量使用 count(*)

7.update优化

我们主要需要注意一下update语句执行时的注意事项。

update course set name = 'javaEE' where id = 1 ; 1

当我们在执行删除的 SQL 语句时,会锁定 id 为 1 这一行的数据,然后事务提交之后,行锁释放。

但是当我们在执行如下 SQL 时。

update course set name = 'SpringBoot' where name = 'PHP' ;

当我们开启多个事务,在执行上述的 SQL 时,我们发现行锁升级为了表锁。 导致该 update 语句的

性能大大降

InnoDB的行锁是针对索引加的锁,不是针对记录加的锁 ,并且该索引不能失效,否则会从行锁升级为表锁 。


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
4月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
927 152
|
4月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎,提供高性价比、稳定安全的云数据库服务,适用于多种行业与业务场景。
769 156
|
3月前
|
SQL 存储 监控
SQL日志优化策略:提升数据库日志记录效率
通过以上方法结合起来运行调整方案, 可以显著地提升SQL环境下面向各种搜索引擎服务平台所需要满足标准条件下之数据库登记作业流程综合表现; 同时还能确保系统稳健运行并满越用户体验预期目标.
254 6
|
4月前
|
SQL 监控 关系型数据库
SQL优化技巧:让MySQL查询快人一步
本文深入解析了MySQL查询优化的核心技巧,涵盖索引设计、查询重写、分页优化、批量操作、数据类型优化及性能监控等方面,帮助开发者显著提升数据库性能,解决慢查询问题,适用于高并发与大数据场景。
|
4月前
|
关系型数据库 分布式数据库 数据库
阿里云数据库收费价格:MySQL、PostgreSQL、SQL Server和MariaDB引擎费用整理
阿里云数据库提供多种类型,包括关系型与NoSQL,主流如PolarDB、RDS MySQL/PostgreSQL、Redis等。价格低至21元/月起,支持按需付费与优惠套餐,适用于各类应用场景。
|
4月前
|
SQL 监控 关系型数据库
查寻MySQL或SQL Server的连接数,并配置超时时间和最大连接量
以上步骤提供了直观、实用且易于理解且执行的指导方针来监管和优化数据库服务器配置。务必记得,在做任何重要变更前备份相关配置文件,并确保理解每个参数对系统性能可能产生影响后再做出调节。
532 11
|
4月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
419 158
|
4月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
4月前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(中)
使用MYSQL Report分析数据库性能
388 156
|
4月前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(上)
最终建议:当前系统是完美的读密集型负载模型,优化重点应放在减少行读取量和提高数据定位效率。通过索引优化、分区策略和内存缓存,预期可降低30%的CPU负载,同时保持100%的缓冲池命中率。建议每百万次查询后刷新统计信息以持续优化
481 161

推荐镜像

更多