【MySQL】七种SQL优化方式 你知道几条(上)

本文涉及的产品
RDS AI 助手,专业版
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: 1.插入数据1.1insert如果我们需要一次性往数据库表中插入多条记录,可以从以下三个方面进行优化。

1.插入数据

1.1insert

如果我们需要一次性往数据库表中插入多条记录,可以从以下三个方面进行优化。

insert into tb_test values(1,'tom');
insert into tb_test values(2,'cat');
insert into tb_test values(3,'jerry');

1). 优化方案一

批量插入数据

Insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');

2). 优化方案二

手动控制事务

start transaction;
insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');
insert into tb_test values(4,'Tom'),(5,'Cat'),(6,'Jerry');
insert into tb_test values(7,'Tom'),(8,'Cat'),(9,'Jerry');
commit;

3). 优化方案三

主键顺序插入,性能要高于乱序插入。

主键乱序插入 : 8 1 9 21 88 2 4 15 89 5 7 3
主键顺序插入 : 1 2 3 4 5 7 8 9 15 21 88 89

1.2大批量插入数据

如果一次性需要插入大批量数据(比如: 几百万的记录),使用insert语句插入性能较低,此时可以使

MySQL数据库提供的load指令进行插入。操作如下:

可以执行如下指令,将数据脚本文件中的数据加载到表结构中:

-- 客户端连接服务端时,加上参数 -–local-infile
mysql –-local-infile -u root -p
-- 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;
-- 执行load指令将准备好的数据,加载到表结构中
load data local infile '/root/sql1.log' into table tb_user fields
terminated by ',' lines terminated by '\n' ;

主键顺序插入性能高于乱序插入

示例演示:

A. 创建表结构

CREATE TABLE `tb_user` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`username` VARCHAR(50) NOT NULL,
`password` VARCHAR(50) NOT NULL,
`name` VARCHAR(20) NOT NULL,
`birthday` DATE DEFAULT NULL,
`sex` CHAR(1) DEFAULT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `unique_user_username` (`username`)
) ENGINE=INNODB DEFAULT CHARSET=utf8 ;

B. 设置参数

-- 客户端连接服务端时,加上参数 -–local-infile
mysql –-local-infile -u root -p
-- 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;

C. load加载数据

load data local infile '/root/load_user_100w_sort.sql' into table tb_user
fields terminated by ',' lines terminated by '\n' ;

c7f1ebc234ee445db4ba14706a9cc8e8.png

我们看到,插入100w的记录,17s就完成了,性能很好。

load时,主键顺序插入性能高于乱序插入

2.主键优化

在上一小节,我们提到,主键顺序插入的性能是要高于乱序插入的。 这一小节,就来介绍一下具

体的原因,然后再分析一下主键又该如何设计。

1). 数据组织方式

InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表

(index organized table IOT)

b9647aa839c64a7e9a6f21e2468c1405.png

行数据,都是存储在聚集索引的叶子节点上的。而我们之前也讲解过InnoDB的逻辑结构图:

在 InnoDB 引擎中,数据行是记录在逻辑结构 page 页中的,而每一个页的大小是固定的,默认

16K 。

那也就意味着, 一个页中所存储的行也是有限的,如果插入的数据行 row 在该页存储不小,将会存

储到下一个页中,页与页之间会通过指针连接。

2). 页分裂

页可以为空,也可以填充一半,也可以填充 100% 。每个页包含了 2-N 行数据 ( 如果一行数据过大,

会行溢出) ,根据主键排列。

A. 主键顺序插入效果

① . 从磁盘中申请页, 主键顺序插入

25dd4059fd05493a92c9e3315c83af39.png

. 第一个页没有满,继续往第一页插入

. 当第一个也写满之后,再写入第二个页,页与页之间会通过指针连接

. 当第二页写满了,再往第三页写入

B. 主键乱序插入效果

. 加入1#,2#页都已经写满了,存放了如图所示的数据

. 此时再插入id50的记录,我们来看看会发生什么现象

会再次开启一个页,写入新的页中吗?
530e110dbf92435e81acbd21fa92a1dd.png

不会。因为,索引结构的叶子节点是有顺序的。按照顺序,应该存储在47之后。

但是 47 所在的 1# 页,已经写满了,存储不了 50 对应的数据了。 那么此时会开辟一个新的页 3# 。

a0f016eea1c947d0ab10ec972e605281.png

但是并不会直接将 50 存入 3# 页,而是会将 1# 页后一半的数据,移动到 3# 页,然后在 3# 页,插入

50 。

移动数据,并插入 id 为 50 的数据之后,那么此时,这三个页之间的数据顺序是有问题的。 1# 的下

一个页,应该是3# , 3# 的下一个页是 2# 。 所以,此时,需要重新设置链表指针。

11f2dbaa82364455bd95ae58c945b22c.png

上述的这种现象,称之为 " 页分裂 " ,是比较耗费性能的操作。

3). 页合并

目前表中已有数据的索引结构 ( 叶子节点 ) 如下:

7675ac3dabc74e86b29bcf50065ae829.png

当我们对已有数据进行删除时,具体的效果如下 :

当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记( flaged )为删除并且它的空

间变得允许被其他记录声明使用。

462cbd20bfc347d3932031b557d21720.png

当我们继续删除2#的数据记录

当页中删除的记录达到 MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的

页(前或后)看看是否可以将两个页合并以优化空间使用。

删除数据,并将页合并之后,再次插入新的数据21,则直接插入3#

这个里面所发生的合并页的这个现象,就称之为 "页合并"

知识小贴士:

MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或者创建索引时指定。

4). 索引设计原则

满足业务需求的情况下,尽量降低主键的长度。

插入数据时,尽量选择顺序插入,选择使用 AUTO_INCREMENT 自增主键。 尽量不要使用 UUID 做

主键或者是其他自然主键,如身份证号。

业务操作时,避免对主键的修改。

483dbcafbea4424e9cd2e100886f0e5e.png

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
4月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
927 152
|
4月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎,提供高性价比、稳定安全的云数据库服务,适用于多种行业与业务场景。
769 156
|
3月前
|
SQL 存储 监控
SQL日志优化策略:提升数据库日志记录效率
通过以上方法结合起来运行调整方案, 可以显著地提升SQL环境下面向各种搜索引擎服务平台所需要满足标准条件下之数据库登记作业流程综合表现; 同时还能确保系统稳健运行并满越用户体验预期目标.
254 6
|
4月前
|
SQL 监控 关系型数据库
SQL优化技巧:让MySQL查询快人一步
本文深入解析了MySQL查询优化的核心技巧,涵盖索引设计、查询重写、分页优化、批量操作、数据类型优化及性能监控等方面,帮助开发者显著提升数据库性能,解决慢查询问题,适用于高并发与大数据场景。
|
4月前
|
关系型数据库 分布式数据库 数据库
阿里云数据库收费价格:MySQL、PostgreSQL、SQL Server和MariaDB引擎费用整理
阿里云数据库提供多种类型,包括关系型与NoSQL,主流如PolarDB、RDS MySQL/PostgreSQL、Redis等。价格低至21元/月起,支持按需付费与优惠套餐,适用于各类应用场景。
|
4月前
|
SQL 监控 关系型数据库
查寻MySQL或SQL Server的连接数,并配置超时时间和最大连接量
以上步骤提供了直观、实用且易于理解且执行的指导方针来监管和优化数据库服务器配置。务必记得,在做任何重要变更前备份相关配置文件,并确保理解每个参数对系统性能可能产生影响后再做出调节。
532 11
|
4月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
419 158
|
4月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
4月前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(中)
使用MYSQL Report分析数据库性能
388 156
|
4月前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(上)
最终建议:当前系统是完美的读密集型负载模型,优化重点应放在减少行读取量和提高数据定位效率。通过索引优化、分区策略和内存缓存,预期可降低30%的CPU负载,同时保持100%的缓冲池命中率。建议每百万次查询后刷新统计信息以持续优化
481 161

推荐镜像

更多