Python标准库分享之存储对象 (pickle包,cPickle包)

简介: Python标准库分享之存储对象 (pickle包,cPickle包)

在之前对Python对象的介绍中 (面向对象的基本概念,面向对象的进一步拓展),我提到过Python“一切皆对象”的哲学,在

Python中,无论是变量还是函数,都是一个对象。当Python运行时,对象存储在内存中,随时等待系统的调用。然而,内存

里的数据会随着计算机关机和消失,如何将对象保存到文件,并储存在硬盘上呢?


计算机的内存中存储的是二进制的序列 (当然,在Linux眼中,是文本流)。我们可以直接将某个对象所对应位置的数据抓取

下来,转换成文本流 (这个过程叫做serialize),然后将文本流存入到文件中。由于Python在创建对象时,要参考对象的类

定义,所以当我们从文本中读取对象时,必须在手边要有该对象的类定义,才能懂得如何去重建这一对象。从文件读取时,

对于Python的内建(built-in)对象 (比如说整数、词典、表等等),由于其类定义已经载入内存,所以不需要我们再在程序中

定义类。但对于用户自行定义的对象,就必须要先定义类,然后才能从文件中载入对象 (比如面向对象的基本概念中的对象

那个summer)。


pickle包

对于上述过程,最常用的工具是Python中的pickle包。


1) 将内存中的对象转换成为文本流:

import pickle
# define class
class Bird(object):
    have_feather = True
    way_of_reproduction  = 'egg'
summer       = Bird()                 # construct an object
picklestring = pickle.dumps(summer)   # serialize object


使用pickle.dumps()方法可以将对象summer转换成了字符串 picklestring(也就是文本流)。随后我们可以用普通文本的存储

方法来将该字符串储存在文件(文本文件的输入输出)。

当然,我们也可以使用pickle.dump()的方法,将上面两部合二为一:


import pickle
# define class
class Bird(object):
    have_feather = True
    way_of_reproduction  = 'egg'
summer       = Bird()                        # construct an object
fn           = 'a.pkl'
with open(fn, 'w') as f:                     # open file with write-mode
    picklestring = pickle.dump(summer, f)   # serialize and save object


对象summer存储在文件a.pkl


2) 重建对象


首先,我们要从文本中读出文本,存储到字符串 (文本文件的输入输出)。然后使用pickle.loads(str)的方法,将字符串转

换成为对象。要记得,此时我们的程序中必须已经有了该对象的类定义。


此外,我们也可以使用pickle.load()的方法,将上面步骤合并:

import pickle
# define the class before unpickle
class Bird(object):
    have_feather = True
    way_of_reproduction  = 'egg'
fn     = 'a.pkl'
with open(fn, 'r') as f:
    summer = pickle.load(f)   # read file and build object


cPickle包

cPickle包的功能和用法与pickle包几乎完全相同 (其存在差别的地方实际上很少用到),不同在于cPickle是基于c语言编写

的,速度是pickle包的1000倍。对于上面的例子,如果想使用cPickle包,我们都可以将import语句改为:


import cPickle as pickle


就不需要再做任何改动了。

相关文章
|
2月前
|
存储 Web App开发 前端开发
Python + Requests库爬取动态Ajax分页数据
Python + Requests库爬取动态Ajax分页数据
|
2月前
|
存储 JSON API
Python与JSON:结构化数据的存储艺术
Python字典与JSON格式结合,为数据持久化提供了便捷方式。通过json模块,可轻松实现数据序列化与反序列化,支持跨平台数据交换。适用于配置管理、API通信等场景,兼具可读性与高效性,是Python开发中不可或缺的数据处理工具。
127 0
|
30天前
|
数据处理 开发工具 开发者
requirement.txt 管理python包依赖
在 Python 项目中,`requirements.txt` 用于记录依赖库及其版本,便于环境复现。本文介绍了多种生成该文件的方法:基础方法使用 `pip freeze`,进阶方法使用 `pipreqs`,专业方法使用 `poetry` 或 `pipenv`,以及手动维护方式。每种方法适用不同场景,涵盖从简单导出到复杂依赖管理,并提供常见问题的解决方案,帮助开发者高效生成精准的依赖列表,确保项目环境一致性。
287 4
|
1月前
|
安全 JavaScript Java
Python中None与NoneType的真相:从单例对象到类型系统的深度解析
本文通过10个真实场景,深入解析Python中表示“空值”的None与NoneType。从单例模式、函数返回值,到类型注解、性能优化,全面揭示None在语言设计与实际编程中的核心作用,帮助开发者正确高效地处理“无值”状态,写出更健壮、清晰的Python代码。
134 3
|
2月前
|
JSON 网络安全 数据格式
Python网络请求库requests使用详述
总结来说,`requests`库非常适用于需要快速、简易、可靠进行HTTP请求的应用场景,它的简洁性让开发者避免繁琐的网络代码而专注于交互逻辑本身。通过上述方式,你可以利用 `requests`处理大部分常见的HTTP请求需求。
287 51
|
1月前
|
数据采集 存储 Web App开发
Python爬虫库性能与选型实战指南:从需求到落地的全链路解析
本文深入解析Python爬虫库的性能与选型策略,涵盖需求分析、技术评估与实战案例,助你构建高效稳定的数据采集系统。
234 0
|
1月前
|
Python
解决Python中AttributeError:'image'对象缺少属性'read_file'的问题策略。
通过上述策略综合考虑,您将能够定位问题并确定如何解决它。记住,Python社区很庞大,也很乐于帮助解决问题,因此不要害怕在求助时提供尽可能多的上下文和您已经尝试过的解决方案。
68 0
|
2月前
|
存储 监控 安全
Python剪贴板监控实战:clipboard-monitor库的深度解析与扩展应用
本文介绍如何利用Python的clipboard-monitor库实现剪贴板监控系统,涵盖文本与图片的实时监听、防重复存储、GUI界面开发及数据加密等核心技术,适用于安全审计与自动化办公场景。
95 0

热门文章

最新文章

推荐镜像

更多