【C语言进阶】动态内存管理(下)

简介: 【C语言进阶】动态内存管理(下)

5.对同一块动态内存多次释放

void test()
{
    int *p = (int *)malloc(100);
    free(p);
    free(p);//重复释放
}


对同一块内存多次释放也是不被允许的,VS2022编译器下测试会报这个错误。

fd9e633d1425490388328878e5bde0bd.png

为了规避这个错误,我们最好在free之后,将free的指针置空,即在free(p);之后加一句p = NULL;


6 动态开辟内存忘记释放(内存泄漏)

void test()
{
    int *p = (int *)malloc(100);
    if(NULL != p)
    {
        *p = 20;
    }
    //...
    if (exp1)
    {
        //...
        return;
    }
    //...
    free(p);
    p = NULL;
}
int main()
{
    test();
    while(1);
}


对于上述代码,我们很容易就会犯这个错误,就会忘记释放。所以动态开辟的空间一定要释放,并且正确释放 。


4. C/C++程序的内存开辟


1d2ff575012a4ff2bffa692ac00827ec.png


C/C++程序内存分配的几个区域:

1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结

束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是

分配的内存容量有限。 栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返

回地址等。

2. 堆区(heap):一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。分

配方式类似于链表。

3. 数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。

4. 代码段:存放函数体(类成员函数和全局函数)的二进制代码。


有了这幅图,我们就可以更好的理解在《C语言初识》中讲的static关键字修饰局部变量的例子了。


实际上普通的局部变量是在栈区分配空间的,栈区的特点是在上面创建的变量出了作用域就销毁。但是被static修饰的变量存放在数据段(静态区),数据段的特点是在上面创建的变量,直到程序结束才销毁所以生命周期变长。


5.柔性数组(flexible array)

这是一个在C99标准中才引入的概念,例如:

typedef struct st_type//方式一
{
    int i;
    int a[0];//柔性数组成员
}type_a;
typedef struct st_type//方式二
{
    int i;
    int a[];//柔性数组成员
}type_a;


有些编译器中,方式一会报错无法编译,可以改成方式二。


柔性数组的特点:

  • 结构中的柔性数组成员前面必须至少一个其他成员。
  • sizeof 返回的这种结构大小不包括柔性数组的内存。
  • 包含柔性数组成员的结构用malloc ()函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。
int mian()
{   
    typedef struct st_type
    {
        int i;
        int a[0];//柔性数组成员
    }type_a;
    printf("%d\n", sizeof(type_a));//输出的是4
    return 0;
}


柔性数组的使用

type_a *p = (type_a*)malloc(sizeof(type_a)+100*sizeof(int));


这样柔性数组成员a,相当于获得了100个整型元素的连续空间。


柔性数组的优势


上述的结构体可以设计成下面的形式 :

int main()
{
    typedef struct st_type
    {
        int i;
        int *p_a;
    }type_a;
    type_a *p = (type_a *)malloc(sizeof(type_a));
    p->i = 100;
    p->p_a = (int *)malloc(p->i*sizeof(int));
    return 0;
}


这两种方式得到的效果是同样的,但是,第一种方式优于第二种:


第一个好处是:方便内存释放

如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。

第二个好处是:这样有利于访问速度

连续的内存有益于提高访问速度,也有益于减少内存碎片。

相关文章
|
5月前
|
C语言 C++
C语言 之 内存函数
C语言 之 内存函数
55 3
|
3月前
|
存储 编译器 程序员
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
在C语言中,内存布局是程序运行时非常重要的概念。内存布局直接影响程序的性能、稳定性和安全性。理解C程序的内存布局,有助于编写更高效和可靠的代码。本文将详细介绍C程序的内存布局,包括代码段、数据段、堆、栈等部分,并提供相关的示例和应用。
85 5
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
|
3月前
|
存储 缓存 算法
【C语言】内存管理函数详细讲解
在C语言编程中,内存管理是至关重要的。动态内存分配函数允许程序在运行时请求和释放内存,这对于处理不确定大小的数据结构至关重要。以下是C语言内存管理函数的详细讲解,包括每个函数的功能、标准格式、示例代码、代码解释及其输出。
135 6
|
4月前
|
传感器 人工智能 物联网
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
103 6
|
4月前
|
存储 C语言
C语言如何使用结构体和指针来操作动态分配的内存
在C语言中,通过定义结构体并使用指向该结构体的指针,可以对动态分配的内存进行操作。首先利用 `malloc` 或 `calloc` 分配内存,然后通过指针访问和修改结构体成员,最后用 `free` 释放内存,实现资源的有效管理。
344 13
|
4月前
|
存储 编译器 数据处理
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
129 12
|
4月前
|
大数据 C语言
C 语言动态内存分配 —— 灵活掌控内存资源
C语言动态内存分配使程序在运行时灵活管理内存资源,通过malloc、calloc、realloc和free等函数实现内存的申请与释放,提高内存使用效率,适应不同应用场景需求。
|
4月前
|
存储 C语言 开发者
C 语言指针与内存管理
C语言中的指针与内存管理是编程的核心概念。指针用于存储变量的内存地址,实现数据的间接访问和操作;内存管理涉及动态分配(如malloc、free函数)和释放内存,确保程序高效运行并避免内存泄漏。掌握这两者对于编写高质量的C语言程序至关重要。
113 11
|
4月前
|
存储 算法 程序员
C 语言指针详解 —— 内存操控的魔法棒
《C 语言指针详解》深入浅出地讲解了指针的概念、使用方法及其在内存操作中的重要作用,被誉为程序员手中的“内存操控魔法棒”。本书适合C语言初学者及希望深化理解指针机制的开发者阅读。
|
4月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
107 1