一起架构-某实时分析项目云原生 serverless 架构的设计思路和poc代码实现

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 一起架构-某实时分析项目云原生 serverless 架构的设计思路和poc代码实现

1. 前言 - 云原生与多云混合云的部署架构

大家好,我是明哥!

在数字化转型的大背景下,越来越多的企业不断将越来越多的应用部署到云上,应用的架构也更加倾向云原生,以支持多云和混合云的部署架构。

前段时间,笔者参与了某个实时分析项目在 AWS 上的架构设计和 POC 开发,该项目使用了 serverless 的云原生架构,在此跟大家分享下架构设计和 poc 代码的细节,希望大家喜欢。

2. 项目背景和目标 Background and goals

整个项目的背景和目标如下:

640.png


经提炼和概括,项目的背景,基本目标和额外目标如下:

  • 背景:Ingest, transform and prepare the netCDF data provided by UK Met Office, make them available for secure querying by our customer, as soon as it arrives in the S3 bucket.
  • 基本目标:Core capabilities include:
  • high availability (no downtime)
  • quick response
  • timely availability of new data.
  • 额外目标:Extra Goals:
  • Security
  • cost effectiveness

3. 整体架构图 Architecture overview

最终设计的完整的架构图如下:

640.png


4. 架构设计和技术选型 Architecture details and thought process

4.1 How to discover new available data ASAP? - SQS

  • UK Met Office prepares the original data in netCDF format and uploaded them to a S3 bucket, but as listing a bucket is both expensive and slow (file system vs object store), we can’t take this approach for quickly discover of new available data in s3;
  • We noticed that UK Met Office will also send a message to a SNS topic once new data is available in the S3 bucket, so we can use a SQS to scribe to the SNS topic, and got notified when new objects are created, this solution is latency-efficient, cost-effective and scalable;

4.2 Can we use the original S3 bucket used by the UK Met Office?

  • We noticed that the original data will be held in the bucket for 7 days after the notification is sent, then they will be deleted;
  • We can use our own S3 bucket to store the data, so we have full control of the data, including the data lifecycle, the data security policies, etc;

4.3 How to server our end users, with quick response and high availability? – API gateway + DynamoDB

  • Our end users typically ask questions like “how will the weather/humidity/temperature be like in city C1, at time T1? how about city C2 and C3? How about time T2?”, to answer that question, we have to first figure out which files in the S3 bucket contains forecast results for that specific time (all the files contains forecast results for all the cities in UK, so place should not be a problem);
  • So we can use a RDS or DynamoDB to store the metadata “which s3 file contains forecast results for which time”, then when we receive a specific question from our customer, we can first query the RDS/DynamoDB to find out the corresponding S3 file, then they can query the s3 file to get all the forecast details, including weather/humidity/temperature etc, for all the UK cities;
  • RDS is a relational database and is typically for well-formed structured data, while DynamoDB is a fully-managed Key-value NoSql data store, both can fulfill our functional requirements, but considering that we don’t have highly-structured data, and DynamoDB shines in Availability. Scalability and Performance, so we will go with DynamoDB;
  • We can use an API gateway as a proxy to the DynamoDB and answer the end user’s request directly, with out an extra lambda layer between API gateway and DynamoDB, hence the whole data pipeline is shorter, which will be more time-effective, cost-effective, and less issues will occur; Also API gateway provides many security mechanisms, including authentication, authorization,audit and encryption;
  • With api gateway, DynamoDB and S3, the whole serving layer will response quickly with high availability, and is also cost-effective and secured;

4.4 How to ingest, transform and prepare the original data - Lambda!

  • To consume messages in SQS queues, we normally follow the event-driven architecture and use streaming processing frameworks like spark streaming/flink/kafka stream, but to use them, you need to first provision ec2 servers and possibly use ecs/eks, but you need to deploy, monitor and scale(both up and down) your app all by yourself, this is cumbersome and not cost-effective;
  • You can consider using serverless Fargate, but you have to deal with the event-driven by yourself;
  • Lambda is both serverless and event-driven, it automatically scales according to your data volume, it integrates with other aws services like sqs, s3, DynamoDB, api gateway well, and it allow you to pay for what you use, so it is a perfect match for our case!
  • we can use lambda and create a sqs trigger, so right after events arrived in sqs, it will trigger the execution of lamba where we can do the transform and load into downstream DynamoDB table;

5 技术组件细节和示例代码 Component details and code samples

5.1 Component details and code samples – sqs and lambda

  • Sqs type:as there is no need for First-in-first-out message delivery and Exactly-once processing, we can stay with the standard type sqs,which offers better scalability;
  • Sqs encryption: Amazon SQS provides in-transit encryption by default, we also added at-rest encryption to our queue by enable server-side encryption (uses Amazon SQS key (SSE-SQS));
  • Lambda: lambda has an sqs trigger, and for performance consideration, we are using batch to writer into dynamodb;
  • Labmda permission: to follow the least-access polity, we created a new IAM role with basic Lambda permissions (with just polices like AWSLambdaSQSQueueExecutionRole/AWSLambdaExecute/AWSLambdaDynamoDBExecutionRole)

5.2 Component details and code samples - dynamoDB

  • dynamoDB is serverless and will auto scale based on data volume and query, so to avoid hot spot bottleneck, we used forecast_period as partition key/hash key and forecast_time as sort key;(forecast_period is the difference between forecast_reference_time and forecast_time);
  • As end users typically query based on time, so we created a secondary global indexes sgi, with partition key on the time field forecast_time;
  • Encryption: we turned on Encryption at rest, and used encryption keys stored in AWS Key Management Service, whch is managed by DynamoDB at no extra cost;
  • permission: for apis to query the dynamoDB, we followed the least-access polity and created an access control policy with only read policy on the table and index;

5.3 Component details and code samples – api gateway

  • Api: I created two methods and resources, and configured the integration request and integration response’s mapping template, to full fill the scan and query on the dynamoDB, with paths like /times and /times/{time}, the latter one will use the sgi we created for the table;
  • Api key: I configured the method request to use API Key;
  • permission: to follow the least-access polity, we created a new IAM role with only necessary permissions (with just polices like AmazonAPIGatewayPushToCloudWatchLogs, and the dynamodb read-only policy we created earlier)

5.4 Component details and code samples – lambda codes

640.png

5.5 Component details and code samples – api codes

640.png

6. 脚本与自动化 automation using script - cloudFormation

  • I believe in IaC (infrustructure As Code) and GitOps, humans will make mistakes and automation helps us on this (plus automation is more efficient and script is more repeatable);
  • So I tried to use cloudFormation template to simplify the infrastructure management (due to time constraint, I only finished the dynamodb template);
  • Below are part of the cloudFormation script for the dynamodb table creation;

640.png

7. 终端用户模拟访问效果 End user query simulation results

640.png

  • IAM user with read only permission – IAM user name: arn:aws:iam::000435319421:user/demo
  • IAM user with read only permission – IAM user password: demo123@aws
  • End user request url: https://jye2m0pw20.execute-api.us-east2.amazonaws.com/v1/times/2022-04-16T22:45:00Z
  • End user request sample path parameter: 2022-04-17T22:30:00Z/2022-04-16T22:45:00Z, etc;
  • End user request type: get
  • End user request Authorization Type: api key
  • Key: x-api-key
  • Value: kNKmXfQGNx802XU1f75Mu9vRAFBvWIdM5uT7NmHa
  • Add to: header

8. 总结 Wrap up

  • high availability (no downtime): The solution used components like sns,sqs,lambda,dynamodb,api gateway and s3, all of which are managed services which scaled well and scaled automatically, to ensure high availability (no downtime);
  • quick response: The solution used dynamoDB in the serving layer, which scales well and scales automatically, and with the careful design of hashkey,sortkey and sgi, it offers quick response time to end users;
  • timely availability of new data: The solution followed the event driven architecture, with sqs and lambda, and ensured the timely availability of new data;
  • cost effectiveness:The solution followed the server-less architecture and used aws serveless services, so we can pay only what we use, and hence is cost effective;
  • security:
  • Encryption:aws service used TLS to provide encryption between user application and the AWS service which offered data-in-motion/transit encryption, and we enabled data-at-rest encryption;
  • Authentication and Authorization:we also followed the least-access policy to create IAM roles and policyes. we also used an api key to protect our api gateway from malicious attacks
  • Audit: CloudWatch is used for the audit;
相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
相关文章
|
3月前
|
SQL 前端开发 关系型数据库
如何开发一套研发项目管理系统?(附架构图+流程图+代码参考)
研发项目管理系统助力企业实现需求、缺陷与变更的全流程管理,支持看板可视化、数据化决策与成本优化。系统以MVP模式快速上线,核心功能包括需求看板、缺陷闭环、自动日报及关键指标分析,助力中小企业提升交付效率与协作质量。
|
3月前
|
JSON 文字识别 BI
如何开发车辆管理系统中的加油管理板块(附架构图+流程图+代码参考)
本文针对中小企业在车辆加油管理中常见的单据混乱、油卡管理困难、对账困难等问题,提出了一套完整的系统化解决方案。内容涵盖车辆管理系统(VMS)的核心功能、加油管理模块的设计要点、数据库模型、系统架构、关键业务流程、API设计与实现示例、前端展示参考(React + Antd)、开发技巧与工程化建议等。通过构建加油管理系统,企业可实现燃油费用的透明化、自动化对账、异常检测与数据分析,从而降低运营成本、提升管理效率。适合希望通过技术手段优化车辆管理的企业技术人员与管理者参考。
|
3月前
|
消息中间件 缓存 JavaScript
如何开发ERP(离散制造-MTO)系统中的生产管理板块(附架构图+流程图+代码参考)
本文详解离散制造MTO模式下的ERP生产管理模块,涵盖核心问题、系统架构、关键流程、开发技巧及数据库设计,助力企业打通计划与执行“最后一公里”,提升交付率、降低库存与浪费。
|
2月前
|
前端开发 JavaScript BI
如何开发车辆管理系统中的车务管理板块(附架构图+流程图+代码参考)
本文介绍了中小企业如何通过车务管理模块提升车辆管理效率。许多企业在管理车辆时仍依赖人工流程,导致违章处理延误、年检过期、维修费用虚高等问题频发。将这些流程数字化,可显著降低合规风险、提升维修追溯性、优化调度与资产利用率。文章详细介绍了车务管理模块的功能清单、数据模型、系统架构、API与前端设计、开发技巧与落地建议,以及实现效果与验收标准。同时提供了数据库建表SQL、后端Node.js/TypeScript代码示例与前端React表单设计参考,帮助企业快速搭建并上线系统,实现合规与成本控制的双重优化。
|
2月前
|
Cloud Native Serverless API
微服务架构实战指南:从单体应用到云原生的蜕变之路
🌟蒋星熠Jaxonic,代码为舟的星际旅人。深耕微服务架构,擅以DDD拆分服务、构建高可用通信与治理体系。分享从单体到云原生的实战经验,探索技术演进的无限可能。
微服务架构实战指南:从单体应用到云原生的蜕变之路
|
3月前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
664 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
3月前
|
监控 供应链 前端开发
如何开发ERP(离散制造-MTO)系统中的财务管理板块(附架构图+流程图+代码参考)
本文详解离散制造MTO企业ERP系统中财务管理模块的搭建,聚焦应收账款与应付账款管理,涵盖核心功能、业务流程、开发技巧及Python代码示例,助力企业实现财务数据准确、实时可控,提升现金流管理能力。
|
3月前
|
供应链 监控 JavaScript
如何开发ERP(离散制造-MTO)系统中的库存管理板块(附架构图+流程图+代码参考)
本文详解MTO模式下ERP库存管理的关键作用,涵盖核心模块、业务流程、开发技巧与代码示例,助力制造企业提升库存周转率、降低缺货风险,实现高效精准的库存管控。
|
3月前
|
前端开发 API 定位技术
如何开发车辆管理系统中的用车申请板块(附架构图+流程图+代码参考)
本文详细解析了如何将传统纸质车辆管理流程数字化,涵盖业务规则、审批流、调度决策及数据留痕等核心环节。内容包括用车申请模块的价值定位、系统架构设计、数据模型构建、前端表单实现及后端开发技巧,助力企业打造可落地、易扩展的车辆管理系统。
|
2月前
|
Java Linux 虚拟化
【Docker】(1)Docker的概述与架构,手把手带你安装Docker,云原生路上不可缺少的一门技术!
1. Docker简介 1.1 Docker是什么 为什么docker会出现? 假定您在开发一款平台项目,您的开发环境具有特定的配置。其他开发人员身处的环境配置也各有不同。 您正在开发的应用依赖于您当前的配置且还要依赖于某些配置文件。 您的企业还拥有标准化的测试和生产环境,且具有自身的配置和一系列支持文件。 **要求:**希望尽可能多在本地模拟这些环境而不产生重新创建服务器环境的开销 问题: 要如何确保应用能够在这些环境中运行和通过质量检测? 在部署过程中不出现令人头疼的版本、配置问题 无需重新编写代码和进行故障修复
342 2