【人工智能】深度学习框架值TF入门-模型保存与加载

简介: 保存完整的模型有很多应用场景,比如在浏览器中使用TensorFlow.js加载运行,比如在移动设备上使用TensorFlow Lite加载运行。

Keras的方式

Keras版本模型保存与加载

函数

保存模型权重:model.save_weights

保存HDF5文件:model.save

保存pb文件:tf.saved_model

tf.saved_modelmodel.save的区别在于,tf.saved_model格式的模型可以直接用来预测,但是tf.saved_model没有保存优化器配置,而model.save保存了优化器配置,所以整体更大。

保存模型权重方法仅仅保存了模型中的权重,而保存模型文件的model.save可以将模型和优化器一起保存,包括权重(weights)、模型配置(architecture)和优化器配置(optimizer configuration)。这样做的好处是,当你恢复模型时,完全不依赖于原来搭建模型的代码。

保存完整的模型有很多应用场景,比如在浏览器中使用TensorFlow.js加载运行,比如在移动设备上使用TensorFlow Lite加载运行。

使用

保存为pd格式

保存:model.save("要保存的目录名称")

读取:model = tf.keras.models.load_model('保存模型的目录名称')

保存为hdf5格式

同上,只是写的不再是目录名称,而是'xxx.h5'

注意:

如果发生报错:model_config = json.loads(model_config.decode('utf-8'))

原因:tensorflow2.1.0支持h5py<3.0.0 而在安装tensorflow会自动安装h5py 3.1.0 。

旧版本的方式(v1.x)

我没安装这个版本的tensorflow,没有经过测试

函数

函数:tf.train.Saver(var_list=none,max_to_keep=5)

  • 保存和加载模型,文件格式:checkpoint文件(扩展名:ckpt)
  • var_list:指定要保存和还原的变量,可以作为一个dict或一个列表传递
  • max_to_keep:指示要保留的最近检查点文件的最大数量。创建新文件时,会删除较旧的文件,如果无或者0,则保留所有检查点文件。默认为5(保留最新的5个检查点文件)

使用方法

旧版本使用办法)(1.x)

saver = tf.train.Saver()
saver.save(Model,"./路径/文件名.ckpt")
saver.restore(Model,"./路径/文件名.ckpt")


目录
打赏
0
0
0
0
19
分享
相关文章
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
471 55
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
257 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
深度学习实践技巧:提升模型性能的详尽指南
深度学习模型在图像分类、自然语言处理、时间序列分析等多个领域都表现出了卓越的性能,但在实际应用中,为了使模型达到最佳效果,常规的标准流程往往不足。本文提供了多种深度学习实践技巧,包括数据预处理、模型设计优化、训练策略和评价与调参等方面的详细操作和代码示例,希望能够为应用实战提供有效的指导和支持。
【01】opencv项目实践第一步opencv是什么-opencv项目实践-opencv完整入门以及项目实践介绍-opencv以土壤和水滴分离的项目实践-人工智能AI项目优雅草卓伊凡
【01】opencv项目实践第一步opencv是什么-opencv项目实践-opencv完整入门以及项目实践介绍-opencv以土壤和水滴分离的项目实践-人工智能AI项目优雅草卓伊凡
167 63
【01】opencv项目实践第一步opencv是什么-opencv项目实践-opencv完整入门以及项目实践介绍-opencv以土壤和水滴分离的项目实践-人工智能AI项目优雅草卓伊凡
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
76 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
121 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
724 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
AI职场突围战:夸克应用+生成式人工智能认证,驱动“打工人”核心竞争力!
在AI浪潮推动下,生成式人工智能(GAI)成为职场必备工具。文中对比了夸克、豆包、DeepSeek和元宝四大AI应用,夸克以“超级入口”定位脱颖而出。同时,GAI认证为职场人士提供系统学习平台,与夸克结合助力职业发展。文章还探讨了职场人士如何通过加强学习、关注技术趋势及培养合规意识,在AI时代把握机遇。

热门文章

最新文章