大数据问题排查系列-大数据集群开启 kerberos 认证后 HIVE 作业执行失败

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据问题排查系列-大数据集群开启 kerberos 认证后 HIVE 作业执行失败

1 前言

大家好,我是明哥!

本文是大数据问题排查系列kerberos问题排查子序列博文之一,讲述大数据集群开启 kerberos 安全认证后,hive作业执行失败的根本原因,解决方法与背后的原理和机制。 以下是正文。

2 问题现象

大数据集群开启 kerberos 安全认证后,HIVE ON SPARK 作业执行失败。通过客户端 beeline 提交作业,报错 spark client 创建失败,其报错信息是:

Failed to create spark client for spark session xxx: java.util.concurrent.TimeoutException: client xxx timedout waiting for connection from the remote spark driver

或者是:

Failed to create spark client for spark session xxx: java.lang.RuntimeException: spark-submit

客户端 beeline 的报错信息截图如下图所示:

3 问题分析

按照问题排查的常规思路,我们首先查看 hiveserver2 的日志,能发现核心报错信息 “Error while waiting for Remote Spark Driver to connect back to HiveServer2”,hiveserver2 的完整相关日志如下所示:

2021-09-02 11:01:29,496 ERROR org.apache.hive.spark.client.SparkClientImpl: [HiveServer2-Background-Pool: Thread-135]: Error while waiting for Remote Spark Driver to connect back to HiveServer2.
java.util.concurrent.ExecutionException: java.lang.RuntimeException: spark-submit process failed with exit code 1 and error ?
 at io.netty.util.concurrent.AbstractFuture.get(AbstractFuture.java:41) ~[netty-common-4.1.17.Final.jar:4.1.17.Final]
 at org.apache.hive.spark.client.SparkClientImpl.<init>(SparkClientImpl.java:103) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hive.spark.client.SparkClientFactory.createClient(SparkClientFactory.java:90) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.RemoteHiveSparkClient.createRemoteClient(RemoteHiveSparkClient.java:104) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.RemoteHiveSparkClient.<init>(RemoteHiveSparkClient.java:100) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.HiveSparkClientFactory.createHiveSparkClient(HiveSparkClientFactory.java:77) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.session.SparkSessionImpl.open(SparkSessionImpl.java:131) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.session.SparkSessionManagerImpl.getSession(SparkSessionManagerImpl.java:132) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.SparkUtilities.getSparkSession(SparkUtilities.java:131) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.SparkTask.execute(SparkTask.java:122) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.Task.executeTask(Task.java:199) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.TaskRunner.runSequential(TaskRunner.java:97) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.launchTask(Driver.java:2200) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.execute(Driver.java:1843) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.runInternal(Driver.java:1563) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.run(Driver.java:1339) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.run(Driver.java:1334) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hive.service.cli.operation.SQLOperation.runQuery(SQLOperation.java:256) [hive-service-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hive.service.cli.operation.SQLOperation.access$600(SQLOperation.java:92) [hive-service-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hive.service.cli.operation.SQLOperation$BackgroundWork$1.run(SQLOperation.java:345) [hive-service-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at java.security.AccessController.doPrivileged(Native Method) ~[?:1.8.0_201]
 at javax.security.auth.Subject.doAs(Subject.java:422) [?:1.8.0_201]
 at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875) [hadoop-common-3.0.0-cdh6.3.2.jar:?]
 at org.apache.hive.service.cli.operation.SQLOperation$BackgroundWork.run(SQLOperation.java:357) [hive-service-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) [?:1.8.0_201]
 at java.util.concurrent.FutureTask.run(FutureTask.java:266) [?:1.8.0_201]
 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_201]
 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_201]
 at java.lang.Thread.run(Thread.java:748) [?:1.8.0_201]
Caused by: java.lang.RuntimeException: spark-submit process failed with exit code 1 and error ?
 at org.apache.hive.spark.client.SparkClientImpl$2.run(SparkClientImpl.java:495) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 ... 1 more
2021-09-02 11:01:29,505 ERROR org.apache.hadoop.hive.ql.exec.spark.SparkTask: [HiveServer2-Background-Pool: Thread-135]: Failed to execute Spark task "Stage-1"
org.apache.hadoop.hive.ql.metadata.HiveException: Failed to create Spark client for Spark session f43a158c-168a-4117-8993-8f1780913715_0: java.lang.RuntimeException: spark-submit process failed with exit code 1 and error ?
 at org.apache.hadoop.hive.ql.exec.spark.session.SparkSessionImpl.getHiveException(SparkSessionImpl.java:286) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.session.SparkSessionImpl.open(SparkSessionImpl.java:135) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.session.SparkSessionManagerImpl.getSession(SparkSessionManagerImpl.java:132) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.SparkUtilities.getSparkSession(SparkUtilities.java:131) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.SparkTask.execute(SparkTask.java:122) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.Task.executeTask(Task.java:199) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.TaskRunner.runSequential(TaskRunner.java:97) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.launchTask(Driver.java:2200) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.execute(Driver.java:1843) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.runInternal(Driver.java:1563) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.run(Driver.java:1339) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.run(Driver.java:1334) [hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hive.service.cli.operation.SQLOperation.runQuery(SQLOperation.java:256) [hive-service-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hive.service.cli.operation.SQLOperation.access$600(SQLOperation.java:92) [hive-service-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hive.service.cli.operation.SQLOperation$BackgroundWork$1.run(SQLOperation.java:345) [hive-service-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at java.security.AccessController.doPrivileged(Native Method) ~[?:1.8.0_201]
 at javax.security.auth.Subject.doAs(Subject.java:422) [?:1.8.0_201]
 at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875) [hadoop-common-3.0.0-cdh6.3.2.jar:?]
 at org.apache.hive.service.cli.operation.SQLOperation$BackgroundWork.run(SQLOperation.java:357) [hive-service-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) [?:1.8.0_201]
 at java.util.concurrent.FutureTask.run(FutureTask.java:266) [?:1.8.0_201]
 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_201]
 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_201]
 at java.lang.Thread.run(Thread.java:748) [?:1.8.0_201]
Caused by: java.lang.RuntimeException: Error while waiting for Remote Spark Driver to connect back to HiveServer2.
 at org.apache.hive.spark.client.SparkClientImpl.<init>(SparkClientImpl.java:124) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hive.spark.client.SparkClientFactory.createClient(SparkClientFactory.java:90) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.RemoteHiveSparkClient.createRemoteClient(RemoteHiveSparkClient.java:104) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.RemoteHiveSparkClient.<init>(RemoteHiveSparkClient.java:100) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.HiveSparkClientFactory.createHiveSparkClient(HiveSparkClientFactory.java:77) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.session.SparkSessionImpl.open(SparkSessionImpl.java:131) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 ... 22 more
Caused by: java.util.concurrent.ExecutionException: java.lang.RuntimeException: spark-submit process failed with exit code 1 and error ?
 at io.netty.util.concurrent.AbstractFuture.get(AbstractFuture.java:41) ~[netty-common-4.1.17.Final.jar:4.1.17.Final]
 at org.apache.hive.spark.client.SparkClientImpl.<init>(SparkClientImpl.java:103) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hive.spark.client.SparkClientFactory.createClient(SparkClientFactory.java:90) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.RemoteHiveSparkClient.createRemoteClient(RemoteHiveSparkClient.java:104) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.RemoteHiveSparkClient.<init>(RemoteHiveSparkClient.java:100) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.HiveSparkClientFactory.createHiveSparkClient(HiveSparkClientFactory.java:77) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.session.SparkSessionImpl.open(SparkSessionImpl.java:131) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 ... 22 more
Caused by: java.lang.RuntimeException: spark-submit process failed with exit code 1 and error ?
 at org.apache.hive.spark.client.SparkClientImpl$2.run(SparkClientImpl.java:495) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 ... 1 more
2021-09-02 11:01:29,506 ERROR org.apache.hadoop.hive.ql.Driver: [HiveServer2-Background-Pool: Thread-135]: FAILED: Execution Error, return code 30041 from org.apache.hadoop.hive.ql.exec.spark.SparkTask. Failed to create Spark client for Spark session f43a158c-168a-4117-8993-8f1780913715_0: java.lang.RuntimeException: spark-submit process failed with exit code 1 and error ?
2021-09-02 11:01:29,507 INFO  org.apache.hadoop.hive.ql.Driver: [HiveServer2-Background-Pool: Thread-135]: Completed executing command(queryId=hive_20210902110125_ca2ab819-fb9c-4540-8690-2a1ed303186d); Time taken: 3.722 seconds
2021-09-02 11:01:29,526 ERROR org.apache.hive.service.cli.operation.Operation: [HiveServer2-Background-Pool: Thread-135]: Error running hive query: 
org.apache.hive.service.cli.HiveSQLException: Error while processing statement: FAILED: Execution Error, return code 30041 from org.apache.hadoop.hive.ql.exec.spark.SparkTask. Failed to create Spark client for Spark session f43a158c-168a-4117-8993-8f1780913715_0: java.lang.RuntimeException: spark-submit process failed with exit code 1 and error ?
 at org.apache.hive.service.cli.operation.Operation.toSQLException(Operation.java:329) ~[hive-service-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hive.service.cli.operation.SQLOperation.runQuery(SQLOperation.java:258) ~[hive-service-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hive.service.cli.operation.SQLOperation.access$600(SQLOperation.java:92) ~[hive-service-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hive.service.cli.operation.SQLOperation$BackgroundWork$1.run(SQLOperation.java:345) [hive-service-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at java.security.AccessController.doPrivileged(Native Method) ~[?:1.8.0_201]
 at javax.security.auth.Subject.doAs(Subject.java:422) [?:1.8.0_201]
 at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875) [hadoop-common-3.0.0-cdh6.3.2.jar:?]
 at org.apache.hive.service.cli.operation.SQLOperation$BackgroundWork.run(SQLOperation.java:357) [hive-service-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) [?:1.8.0_201]
 at java.util.concurrent.FutureTask.run(FutureTask.java:266) [?:1.8.0_201]
 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_201]
 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_201]
 at java.lang.Thread.run(Thread.java:748) [?:1.8.0_201]
Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: Failed to create Spark client for Spark session f43a158c-168a-4117-8993-8f1780913715_0: java.lang.RuntimeException: spark-submit process failed with exit code 1 and error ?
 at org.apache.hadoop.hive.ql.exec.spark.session.SparkSessionImpl.getHiveException(SparkSessionImpl.java:286) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.session.SparkSessionImpl.open(SparkSessionImpl.java:135) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.session.SparkSessionManagerImpl.getSession(SparkSessionManagerImpl.java:132) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.SparkUtilities.getSparkSession(SparkUtilities.java:131) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.SparkTask.execute(SparkTask.java:122) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.Task.executeTask(Task.java:199) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.TaskRunner.runSequential(TaskRunner.java:97) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.launchTask(Driver.java:2200) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.execute(Driver.java:1843) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.runInternal(Driver.java:1563) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.run(Driver.java:1339) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.run(Driver.java:1334) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hive.service.cli.operation.SQLOperation.runQuery(SQLOperation.java:256) ~[hive-service-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 ... 11 more
Caused by: java.lang.RuntimeException: Error while waiting for Remote Spark Driver to connect back to HiveServer2.
 at org.apache.hive.spark.client.SparkClientImpl.<init>(SparkClientImpl.java:124) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hive.spark.client.SparkClientFactory.createClient(SparkClientFactory.java:90) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.RemoteHiveSparkClient.createRemoteClient(RemoteHiveSparkClient.java:104) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.RemoteHiveSparkClient.<init>(RemoteHiveSparkClient.java:100) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.HiveSparkClientFactory.createHiveSparkClient(HiveSparkClientFactory.java:77) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.session.SparkSessionImpl.open(SparkSessionImpl.java:131) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.session.SparkSessionManagerImpl.getSession(SparkSessionManagerImpl.java:132) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.SparkUtilities.getSparkSession(SparkUtilities.java:131) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.SparkTask.execute(SparkTask.java:122) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.Task.executeTask(Task.java:199) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.TaskRunner.runSequential(TaskRunner.java:97) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.launchTask(Driver.java:2200) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.execute(Driver.java:1843) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.runInternal(Driver.java:1563) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.run(Driver.java:1339) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.run(Driver.java:1334) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hive.service.cli.operation.SQLOperation.runQuery(SQLOperation.java:256) ~[hive-service-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 ... 11 more
Caused by: java.util.concurrent.ExecutionException: java.lang.RuntimeException: spark-submit process failed with exit code 1 and error ?
 at io.netty.util.concurrent.AbstractFuture.get(AbstractFuture.java:41) ~[netty-common-4.1.17.Final.jar:4.1.17.Final]
 at org.apache.hive.spark.client.SparkClientImpl.<init>(SparkClientImpl.java:103) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hive.spark.client.SparkClientFactory.createClient(SparkClientFactory.java:90) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.RemoteHiveSparkClient.createRemoteClient(RemoteHiveSparkClient.java:104) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.RemoteHiveSparkClient.<init>(RemoteHiveSparkClient.java:100) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.HiveSparkClientFactory.createHiveSparkClient(HiveSparkClientFactory.java:77) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.session.SparkSessionImpl.open(SparkSessionImpl.java:131) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.session.SparkSessionManagerImpl.getSession(SparkSessionManagerImpl.java:132) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.SparkUtilities.getSparkSession(SparkUtilities.java:131) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.spark.SparkTask.execute(SparkTask.java:122) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.Task.executeTask(Task.java:199) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.exec.TaskRunner.runSequential(TaskRunner.java:97) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.launchTask(Driver.java:2200) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.execute(Driver.java:1843) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.runInternal(Driver.java:1563) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.run(Driver.java:1339) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hadoop.hive.ql.Driver.run(Driver.java:1334) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 at org.apache.hive.service.cli.operation.SQLOperation.runQuery(SQLOperation.java:256) ~[hive-service-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 ... 11 more
Caused by: java.lang.RuntimeException: spark-submit process failed with exit code 1 and error ?
 at org.apache.hive.spark.client.SparkClientImpl$2.run(SparkClientImpl.java:495) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
 ... 1 more
2021-09-02 11:01:29,552 INFO  org.apache.hadoop.hive.conf.HiveConf: [HiveServer2-Handler-Pool: Thread-128]: Using the default value passed in for log id: f43a158c-168a-4117-8993-8f1780913715

但是因为 “Error while waiting for Remote Spark Driver to connect back to HiveServer2” 造成 “Failed to create spark client for spark session xxx:” 的根本原因,相对难发现,因为在hiveserver2的日志,hive on spark 作业的日志 (通过yarn logs -applicationId xx 查看),甚至yarn的日志中,都找不到明显的相关信息;

4 问题原因

进一步排查问题,需要 在理解作业的底层执行机制的基础上, 大胆猜想,小心求证

HIVE 作业的执行机制如下:

  • 终端业务用户比如 xyz 提交给 HIVESERVER2 的 SQL作业,经过 HIVESERVER2 的解析编译和优化后,一般会生成 MR/TEZ/SPARK 任务(之所以说一般,是因为有的 SQL 是直接在HIVESERVER2中执行的,不会生成分布式的 MR/TEZ/SPARK 任务),这些 MR/TEZ/SPARK 任务最终访问底层的基础设施 HDFS 和 YARN 时,一样要经过 kerberos 安全认证;
  • 当启用了 HIVE 的代理机制时(hive.server.enable.doAs=true),业务终端用户如 xyz 提交的 HIVE SQL 作业底层的 MR/TEZ/SPARK 任务访问 HDFS/YARN 时,HDFS/YARN 验证的是业务终端用户 xyz 的身份 (后续 HDFS/YARN 的权限校验,校验的也是 xyz 用户的权限);
  • 当没有启用 HIVE 的代理机制时(hive.server.enable.doAs=false),业务终端用户提交的 HIVE SQL 作业底层的 MR/TEZ/SPARK 任务访问 HDFS/YARN 时,需要验证的是 hiveserver2 服务对应的用户,即 hive 的身份 (后续 HDFS/YARN 的权限校验,校验的也是 hive 用户的权限);

至此问题就比较清晰了:

  • 在上述集群环境中,cdh 集群管理员开启了 kerberos 安全认证,即集群中 hdfs/yarn/hive/spark/kafka 等服务的使用,都需要经过kerberso 安全认证;
  • 当 hiveserver2 执行业务用户提交的 sql 作业时,由于业务用户配置了使用 spark 执行引擎,所以 hiveserver2 需要首先为业务用户用户创建 spark 集群;
  • 在上述集群环境中,cdh 集群管理员开启了 hive.server.enable.doAs=true,所以 hiveserver2 创建 spark集群时,spark 集群的 driver 向 yarn 申请资源时,yarn 校验的是 xyz 的身份;
  • 由于 hiveserver2 没有提供一致机制将业务用户 xyz的 principal 和对应的 keytab 透传到 yarn, 所以 yarn 对 xyz 的用户认证失败,没有相应其资源请求,从而 spark driver 因获取不到 yarn资源无法成功启动,自然也就不会回连到spark driver的客户端即hiveserver2,所以才有相关报错:"Failed to create spark client for spark session xxx“,“Error while waiting for Remote Spark Driver to connect back to HiveServer2”等。

事实上,细心的小伙伴,能在 hiveserver2 的日志中,查看到 securityManager 验证用户身份的相关日志:


同样的,细心的小伙伴,能在 hiveserver2 的日志中,查看到 hive 启动 spark on yarn 集群的相关日志:

2021-09-02 14:19:10,067 INFO  org.apache.hive.spark.client.SparkClientImpl: [HiveServer2-Background-Pool: Thread-110]: Running client driver with argv: kinit hive/uf30-1@CDH.COM -k -t hive.keytab; /opt/cloudera/parcels/CDH-6.3.2-1
.cdh6.3.2.p0.1605554/lib/spark/bin/spark-submit --executor-cores 4 --executor-memory 6442450944b --proxy-user dap --jars /opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/hive-kryo-registrator-2.1.1-cdh6.3.2.jar --propert
ies-file /tmp/spark-submit.7174671910364719325.properties --class org.apache.hive.spark.client.RemoteDriver /opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/hive-exec-2.1.1-cdh6.3.2.jar --remote-host uf30-1 --remote-port
 39677 --remote-driver-conf hive.spark.client.future.timeout=60000 --remote-driver-conf hive.spark.client.connect.timeout=1000 --remote-driver-conf hive.spark.client.server.connect.timeout=90000 --remote-driver-conf hive.spark.cli
ent.channel.log.level=null --remote-driver-conf hive.spark.client.rpc.max.size=52428800 --remote-driver-conf hive.spark.client.rpc.threads=8 --remote-driver-conf hive.spark.client.secret.bits=256 --remote-driver-conf hive.spark.cl
ient.rpc.server.address=null --remote-driver-conf hive.spark.client.rpc.server.port=null

5 问题解决

知道了问题的根本原因,问题的解决也就顺理成章了。 有两个解决办法:

  • 关闭集群的 kerberos 安全认证,此时向 yarn 申请资源时,yarn 不再需要验证用户的身份,hive sql 作业不管再底层用什么身份执行,都不会有用户身份认证问题;(当然,用户权限问题是另一回事);
  • 保留集群的 kerberos 安全认证,但关闭 hive的代理功能,即hive.server2.enable.doAs=false:此时 hive 可以使用各种认证方式(hive.server2.authentication= none/ldap/kerberos), 各个业务用户正常提交 HIVE SQL 作业给 HIVESERVER2 并可配置使用 MR/TEZ/SPARK 任一执行引擎,HIVESERVER2 经解析编译优化生成 MR/TEZ/SPARK任务后,会以 hive 用户身份跟 yarn/hdfs 进行交互和身份认证,由于集群已经配好了 HIVE 用户的相关配置(其实底层是在 hive-site.xml 中配置好了 hive 这个用户的 principal 和对应的keytab文件,所以 hive 用户跟 hdfs/yarn的交互和认证都没有问题),所以此时 hivesql 作业可以提交执行。

注意:

  • - 有小伙伴提到,他们的集群中开启了 kerberos 安全认证,也启用了hive的代理功能 hive.server2.enable.doAs=true, 但是 hive sql作业可以在 yarn 上执行成功;
  • - 这其实是因为,他们提交 hivesql 时没有使用业务用户如 xyz 而是直接使用了 hive 系统用户,所以经过hiveserver2的代理后,对 yarn/hdfs来说,用户的身份是 HIVE, 所以自然没有问题;
  • - 一般来说,我们推荐各个业务系统使用该系统对应的业务用户的身份提交业务SQL,而不是各个业务系统统一都使用 HIVE 系统用户.

6 知识总结

  • hive 可以配置使用各种认证方式 (hive.server2.authentication= none/ldap/kerberos);
  • hive 可以配置使用各种执行引擎 (hive.execution.engine= mr/tez/spark);
  • hive 有代理功能,可以开启也可以关闭:hive.server2.enable.doAs=false/TRUE,"Setting this property to true will have HiveServer2 execute Hive operations as the user making the calls to it." (一些安全插件如 SENTRY/RANGER 要求关闭该功能);
  • 终端业务用户比如 xyz 提交给 HIVESERVER2 的 SQL作业,经过 HIVESERVER2 的解析编译和优化后,一般会生成 MR/TEZ/SPARK 任务(之所以说一般,是因为有的 SQL 是直接在HIVESERVER2中执行的,不会生成分布式的 MR/TEZ/SPARK 任务),这些 MR/TEZ/SPARK 任务最终访问底层的基础设施 HDFS 和 YARN 时,一样要经过这些基础设施 hdfs/yarn的 安全认证;
  • 当启用了 HIVE 的代理机制时(hive.server.enable.doAs=true),业务终端用户如 xyz 提交的 HIVE SQL 作业底层的 MR/TEZ/SPARK 任务访问 HDFS/YARN 时,HDFS/YARN 验证的是业务终端用户 xyz 的身份 (后续 HDFS/YARN 的权限校验,校验的也是 xyz 用户的权限);
  • 当没有启用 HIVE 的代理机制时(hive.server.enable.doAs=false),业务终端用户提交的 HIVE SQL 作业底层的 MR/TEZ/SPARK 任务访问 HDFS/YARN 时,需要验证的是 hiveserver2 服务对应的用户,即 hive 的身份 (后续 HDFS/YARN 的权限校验,校验的也是 hive 用户的权限);
  • 当我们说启用大数据集群的 kerberos 安全认证,一般是整个集群层面的各个服务,都启用 kerberos 安全认证:因为当底层的基础设施 hdfs/yarn 启用 kerberos 安全认证后,任何和 hdfs/yarn 交互的组件,都需要经过 kerberos 安全认证;
  • 发行版的大数据集群如 CDH 一般都已经配好了 HIVE 用户的相关 kerberos 安全配置,其实底层是在 hive-site.xml 中配置好了 hive 这个用户的 principal 和对应的keytab文件,所以 hive 用户跟 hdfs/yarn的交互和认证都没有问题;
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
相关文章
|
1月前
|
SQL 存储 分布式计算
Hadoop-16-Hive HiveServer2 HS2 允许客户端远程执行HiveHQL HCatalog 集群规划 实机配置运行
Hadoop-16-Hive HiveServer2 HS2 允许客户端远程执行HiveHQL HCatalog 集群规划 实机配置运行
41 3
|
1月前
|
SQL 分布式计算 Hadoop
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
60 3
|
1月前
|
SQL 分布式计算 Hadoop
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
43 2
|
1月前
|
SQL 存储 数据管理
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
56 2
|
1月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
34 0
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
84 0
|
4月前
|
分布式计算 安全 大数据
HAS插件式Kerberos认证框架:构建安全可靠的大数据生态系统
在教育和科研领域,研究人员需要共享大量数据以促进合作。HAS框架可以提供一个安全的数据共享平台,确保数据的安全性和合规性。
|
4月前
|
分布式计算 DataWorks 调度
MaxCompute产品使用合集之如何将数据迁移到CDH Hive
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
6月前
|
SQL 数据采集 数据挖掘
大数据行业应用之Hive数据分析航班线路相关的各项指标
大数据行业应用之Hive数据分析航班线路相关的各项指标
191 1
|
4月前
|
SQL 分布式计算 大数据
大数据处理平台Hive详解
【7月更文挑战第15天】Hive作为基于Hadoop的数据仓库工具,在大数据处理和分析领域发挥着重要作用。通过提供类SQL的查询语言,Hive降低了数据处理的门槛,使得具有SQL背景的开发者可以轻松地处理大规模数据。然而,Hive也存在查询延迟高、表达能力有限等缺点,需要在实际应用中根据具体场景和需求进行选择和优化。

热门文章

最新文章