大数据问题排查系列 - SPARK STANDALONE HA 模式的一个缺陷点与应对方案

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: 大数据问题排查系列 - SPARK STANDALONE HA 模式的一个缺陷点与应对方案

前言

大家好,我是明哥!

作为当今离线批处理模式的扛把子,SPARK 在绝大多数公司的数据处理平台中都是不可或缺的。而在底层使用的具体资源管理器上,SPARK 支持四种模式:

  • standalone
  • yarn
  • mesos
  • kubernetes

四种模式的简单对比如下图:

image.png


以上四种模式中,mesos 在业界使用的最少,其次是 standalone 模式,再次是 yarn 模式。不过随着大数据与云计算日益融合的趋势,现在也有不少场景在使用 kubernetes 替代 yarn 和 standalone 模式。

关于大数据的发展趋势,尤其是大数据与云计算日益融合的趋势,大家可参考笔者以往两篇文章:

michaelli:从技术视角看大数据行业的发展趋势

本文讲述,spark standalone部署模式下,HA 高可用部署的一个缺陷点和对应的解决办法。

以下是正文。

SPARK STADNALONE HA 模式的确切含义是什么?

我们知道,spark 在 standalone 部署模式下,有多个 worker 节点负责具体任务的执行,spark 框架帮我们解决了作业底层各个 stage 以及各个 stage 中各个 task 任务执行失败时的容错,spark框架也帮我们解决了 各个 worker 节点宕机情况下的容错;但是整个 spark 集群是只有一个 master 节点负责接收用户提交的作业的,该 master 节点是有单点故障即 SPOF(single point of failure)的。

为了应对 master 节点的 spof, 我们可以做 master 节点的 HA 高可用:即部署多个 master 节点,并通过选举确保同一时间只有一个 active 的 master 对外提供服务,当该 active master 节点意外宕机时,原先 standby 的 master 节点会自动检测到这种异常情况并被选举成为新的 active master,从而对外提供服务(接受 worker 注册,接受作业提交);同时原先已经注册到集群中的 workers,以及原先已经提交的作业,会自动注册到该新的 master 上,即不丢失状态。

如何配置和使用 STANDALONE HA 模式下的 SPARK 集群?

有两种方法,配置都很简单:

  • 一是配置 spark-defaults.conf,示例如下:
  • spark.master spark://node1:7077,node2:7077
  • spark.deploy.recoveryMode ZOOKEEPER
  • spark.deploy.zookeeper.url node1:2181,node2:2181,node3:2181
  • spark.deploy.zookeeper.dir /spark24-ha
  • 二是配置spark-env.sh,示例如下:

image.png


当然,客户端在使用 HA 模式的 SPARK STANDALONE 集群时,需要将 spark.master 配置为以下方式,才会轮询检查可用的 spark master:

  • spark.master spark://node1:7077,node2:7077

问题现象 - SPARK STANDALONE HA 模式的一个缺陷

笔者在线上使用过程中,发现了 SPARK STANDALONE HA 模式的一个缺陷点,或者说做的不完善的地方: 某客户环境的 spark standalone 部署模式,通过 zk 配置了ha 高可用后,发现 active spark master 经常挂掉,且 standby spark master 经过选举成为 active spark master 后也经常挂掉。

经过 google 搜索,发现有一个相关的 jira 是关于这个的:

Bouncing Zookeeper node causes Active spark master to exit

问题原因

  • Active 与 standby 的 spark master 在底层都会跟 zk 建立两个 session 链接, 一个是跟 zk leader node 的 session 链接,还有一个是跟任一 zk node 的 session 链接。
  • 一旦 active spark master 底层跟 zk 的 session 链接断开,不管该 session 链接底层的 zk 是 leader 还是follower,原 active 状态的 spark master 的 leader 角色都会被剥夺,然后该 spark master 进程会自动退出。
  • 同时原 standby 状态的 spark master 会成功切换为active状态,并自动接受已提交运行的application 的重新注册(当然,这些 application 需要配置多个 spark master 的轮询,如:spark://node1:7077,node2:7077)。
  • 其实,以上现象说白了,是 active spark master 在因底层 zk 不稳定或其他原因造成 session 链接断开时,会被剥夺 leader 角色,这点没什么问题;但随后 spark 直接将被剥夺了 leader 角色的 master 进程直接退出了,这点就有点简单粗暴了。相关源码如下:

image.png

问题解决

可以从两个方面着手,解决该问题:

  1. spark master 进程异常退出的根本原因是,底层的 zk 负载过大不稳定造成 spark 跟 zk 的 session 连接经常断开,(在 spark, kafka, 微服务等服务都使用同一个 zk 集群时,经常会出现该问题)。所以从根本上解决问题,需要从 zk 的稳定上做文章,可以配置 spark 单独使用一个独立的 zk 集群 (由于 spark 对 zk 的压力不大,对 zk 的性能要求也不是很高,所以该 zk 集群可以跟 spark 集群混部);
  2. active spark master 在因底层 zk session 链接断掉失去 leader 角色后会自动退出,所以为确保 HA 效果,我们可以再次启动该 spark master 服务,以确保集群中有至少两个 spark master。具体实现方式上,可以通过监控脚本或 haproxy 等工具,自动检测 spark master 进程并在该进程异常推出后,自动再次启动该进程 (其实底层只需执行 sh $SPARK_HOME/sbin/start-master.sh即可)

相关日志

当 zk 的 leader 节点重启时,原先 active 状态的 spark master 节点日志如下:

21/08/18 18:43:15 INFO zookeeper.ClientCnxn: Unable to read additional data from server sessionid 0x27a687ab09da9f8, likely server has closed socket, closing socket connection and attempting reconnect
21/08/18 18:43:15 INFO state.ConnectionStateManager: State change: SUSPENDED
21/08/18 18:43:15 INFO state.ConnectionStateManager: State change: SUSPENDED
21/08/18 18:43:15 INFO master.ZooKeeperLeaderElectionAgent: We have lost leadership
21/08/18 18:43:15 ERROR master.Master: Leadership has been revoked -- master shutting down.

当 zk 的 follower 节点重启时,原先 active 状态的 spark master 节点日志如下:

21/08/18 22:51:46 WARN zookeeper.ClientCnxn: Session 0x17b58dbaaf60171 for server node1/10.20.39.41:2181, unexpected error, closing socket connection and attempting reconnect
java.io.IOException: Connection reset by peer
        at sun.nio.ch.FileDispatcherImpl.read0(Native Method)
        at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:39)
        at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:223)
        at sun.nio.ch.IOUtil.read(IOUtil.java:192)
        at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:380)
        at org.apache.zookeeper.ClientCnxnSocketNIO.doIO(ClientCnxnSocketNIO.java:68)
        at org.apache.zookeeper.ClientCnxnSocketNIO.doTransport(ClientCnxnSocketNIO.java:366)
        at org.apache.zookeeper.ClientCnxn$SendThread.run(ClientCnxn.java:1081)
21/08/18 22:51:46 INFO state.ConnectionStateManager: State change: SUSPENDED
21/08/18 22:51:46 INFO master.ZooKeeperLeaderElectionAgent: We have lost leadership
21/08/18 22:51:46 ERROR master.Master: Leadership has been revoked -- master shutting down.

当 zk 的 leader 节点重启时,原先 standby 状态的 spark master 节点日志如下:

21/08/18 18:43:18 INFO zookeeper.ClientCnxn: Socket connection established to node3/10.20.39.43:2181, initiating session
21/08/18 18:43:18 INFO zookeeper.ClientCnxn: Session establishment complete on server node3/10.20.39.43:2181, sessionid = 0x37a687ab25aa91d, negotiated timeout = 60000
21/08/18 18:43:18 INFO state.ConnectionStateManager: State change: RECONNECTED
21/08/18 18:44:18 INFO master.ZooKeeperLeaderElectionAgent: We have gained leadership
21/08/18 18:44:18 INFO master.Master: I have been elected leader! New state: RECOVERING
21/08/18 18:44:18 INFO master.Master: Trying to recover worker: worker-20210818182026-10.20.39.42-46483
21/08/18 18:44:18 INFO master.Master: Trying to recover worker: worker-20210818182026-10.20.39.43-37230
21/08/18 18:44:18 INFO client.TransportClientFactory: Successfully created connection to /10.20.39.42:46483 after 6 ms (0 ms spent in bootstraps)
21/08/18 18:44:18 INFO client.TransportClientFactory: Successfully created connection to /10.20.39.43:37230 after 6 ms (0 ms spent in bootstraps)
21/08/18 18:44:18 INFO master.Master: Worker has been re-registered: worker-20210818182026-10.20.39.42-46483
21/08/18 18:44:18 INFO master.Master: Worker has been re-registered: worker-20210818182026-10.20.39.43-37230
21/08/18 18:44:18 INFO master.Master: Recovery complete - resuming operations!


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
131 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
114 2
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
77 1
|
1月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
2月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
1月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
307 7
|
1月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
47 2
|
1月前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
86 1
|
26天前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
63 4
|
1月前
|
存储 大数据 数据管理
大数据分区简化数据维护
大数据分区简化数据维护
24 4