《动手吧,开发者》第七期学习分享

简介: 心得分享

参加《动手吧,开发者》第七期的学习,让我对人工智能的应用有了更深入的了解,并且让我感受到了技术的魅力和无限可能。

在这个项目中,我们学习了如何使用ChatGLM6B大语言模型来构建一个AI知识库问答应用。通过这个应用,我们可以支持投喂PDF、TXT、HTML等文件以及URL类型的资料,实现了对各种类型的资料进行问答的功能。这让我感到非常惊喜,因为以前我只是简单地使用搜索引擎来查找答案,而现在我可以通过自己搭建的AI助理来获取更准确、更全面的知识。

在学习的过程中,我深深感受到了技术的魅力。通过学习如何使用ChatGLM6B大语言模型,我了解到了人工智能的强大能力和广泛应用的前景。这种技术可以帮助我们更高效地获取信息,解决问题,甚至可以为我们提供更个性化、更贴心的服务。我对未来的技术发展感到无限期待,我相信人工智能将会在各个领域发挥更重要的作用。
除了技术的魅力,这个项目还让我体会到了动手实践的重要性。通过实际操作,我不仅仅学习到了如何使用ChatGLM6B大语言模型,还学习到了如何处理不同类型的文件和URL,如何定制一个私人AI助理等等。这些实践经验对于我今后的学习和工作都非常有帮助,让我更加熟悉了解决问题的方法和思路。

最后,我要感谢《动手吧,开发者》第七期的组织者和老陈打码UP主的辛勤付出和教导。通过这个项目,我不仅仅学到了知识,还结识了许多志同道合的朋友,共同探讨和学习技术。我相信,在这个团结友爱的社群中,我们可以共同进步,共同成长。

总而言之,参加《动手吧,开发者》第七期的学习让我受益匪浅。我对人工智能的应用有了更深入的了解,对技术的魅力有了更深刻的感受,同时也积累了宝贵的实践经验。我相信,通过不断学习和实践,我能够在技术的道路上越走越远,为社会的发展做出自己的贡献。让我们一起动手吧,开发者!

image.png

目录
相关文章
|
1月前
|
人工智能 并行计算 安全
从零到一,打造专属AI王国!大模型私有化部署全攻略,手把手教你搭建、优化与安全设置
【10月更文挑战第24天】本文详细介绍从零开始的大模型私有化部署流程,涵盖需求分析、环境搭建、模型准备、模型部署、性能优化和安全设置六个关键步骤,并提供相应的示例代码,确保企业能够高效、安全地将大型AI模型部署在本地或私有云上。
513 7
|
17天前
|
人工智能 Java API
教你自创工作流,赋予AI助理个性化推荐超能力
本文详细介绍了使用Spring AI Alibaba构建AI助理的全过程,涵盖从基本流程设计到实际操作实现的各个方面。文章首先回顾了前期工作,包括旅游攻略、天气查询和个人待办事项等功能模块的设计与实现。接着,深入探讨了工作流的实现细节,如事件封装优化、工作流节点创建及复杂工作流的高效管理。最后,通过实际项目启动与运行测试,展示了AI助理的实际效果,验证了系统的稳定性和可扩展性。本文不仅适合Java开发者学习AI技术,也为后续的优化和功能拓展提供了宝贵的经验。
360 7
教你自创工作流,赋予AI助理个性化推荐超能力
|
13天前
|
人工智能 Java Serverless
阿里云函数计算助力AI大模型快速部署
随着人工智能技术的快速发展,AI大模型已经成为企业数字化转型的重要工具。然而,对于许多业务人员、开发者以及企业来说,探索和利用AI大模型仍然面临诸多挑战。业务人员可能缺乏编程技能,难以快速上手AI模型;开发者可能受限于GPU资源,无法高效构建和部署AI应用;企业则希望简化技术门槛,以更低的成本和更高的效率利用AI大模型。
67 12
|
6天前
|
人工智能 数据库 自然语言处理
拥抱Data+AI|DMS+AnalyticDB助力钉钉AI助理,轻松玩转智能问数
「拥抱Data+AI」系列文章由阿里云瑶池数据库推出,基于真实客户案例,展示Data+AI行业解决方案。本文通过钉钉AI助理的实际应用,探讨如何利用阿里云Data+AI解决方案实现智能问数服务,使每个人都能拥有专属数据分析师,显著提升数据查询和分析效率。点击阅读详情。
拥抱Data+AI|DMS+AnalyticDB助力钉钉AI助理,轻松玩转智能问数
|
11天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
14天前
|
机器学习/深度学习 存储 人工智能
【AI系统】训练后量化与部署
本文详细介绍了训练后量化技术,涵盖动态和静态量化方法,旨在将模型权重和激活从浮点数转换为整数,以优化模型大小和推理速度。通过KL散度等校准方法和量化粒度控制,文章探讨了如何平衡模型精度与性能,同时提供了端侧量化推理部署的具体实现步骤和技术技巧。
40 1
【AI系统】训练后量化与部署
|
19天前
|
人工智能 监控 Serverless
《主动式智能导购AI助手构建》解决方案部署测评
在数字化时代,智能导购AI助手已成为提升客户体验和销售效率的重要工具。本文将基于个人体验,对《主动式智能导购AI助手构建》解决方案的部署过程进行详细评测。
37 3
|
5天前
|
人工智能 API Windows
免费部署本地AI大语言模型聊天系统:Chatbox AI + 马斯克grok2.0大模型(简单5步实现,免费且比GPT4.0更好用)
本文介绍了如何部署本地AI大语言模型聊天系统,使用Chatbox AI客户端应用和Grok-beta大模型。通过获取API密钥、下载并安装Chatbox AI、配置模型,最终实现高效、智能的聊天体验。Grok 2大模型由马斯克X-AI发布,支持超长文本上下文理解,免费且易于使用。
33 0
|
1月前
|
人工智能 安全 网络安全
揭秘!大模型私有化部署的全方位安全攻略与优化秘籍,让你的AI项目稳如磐石,数据安全无忧!
【10月更文挑战第24天】本文探讨了大模型私有化部署的安全性考量与优化策略,涵盖数据安全、防火墙配置、性能优化、容器化部署、模型更新和数据备份等方面,提供了实用的示例代码,旨在为企业提供全面的技术参考。
99 6
|
1月前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,企业越来越关注大模型的私有化部署。本文详细探讨了硬件资源需求、数据隐私保护、模型可解释性、模型更新和维护等方面的挑战及解决方案,并提供了示例代码,帮助企业高效、安全地实现大模型的内部部署。
121 1
下一篇
DataWorks