java线程池-工作队列workQueue

简介: 采用数组来实现,并采用可重入锁ReentrantLock来做并发控制,无论是添加还是读取,都先要获得锁才能进行操作 可看出进行读写操作都使用了ReentrantLock,ArrayBlockingQueue需要为其指定容量

线程池之工作队列


ArrayBlockingQueue


采用数组来实现,并采用可重入锁ReentrantLock来做并发控制,无论是添加还是读取,都先要获得锁才能进行操作 可看出进行读写操作都使用了ReentrantLock,ArrayBlockingQueue需要为其指定容量


public boolean offer(E e) {
        checkNotNull(e);
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            if (count == items.length)
                return false;
            else {
                enqueue(e);
                return true;
            }
        } finally {
            lock.unlock();
        }
    }
    public void put(E e) throws InterruptedException {
        checkNotNull(e);
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            while (count == items.length)
                notFull.await();
            enqueue(e);
        } finally {
            lock.unlock();
        }
    }


SynchronousQueue


由于SynchronousQueue源码比较复杂,里面大量的Cas操作,SynchronousQueue没有容器,所以里面是装不了任务的,当一个生产者线程生产一个任务的 时候,如果没有对应的消费者消费,那么该生产者会一直阻塞,知道有消费者消费为止。


如下代码,如果我们将消费者线程注释掉执行,那么生产者哪里将会一直阻塞


package thread.customthreadpool;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.ThreadPoolExecutor;
/**
 * 测试SynchronousQueue
 */
public class SynchronousQueueTest {
    private static final SynchronousQueue<String> synchronousQueue = new SynchronousQueue<>();
    private static final ExecutorService service = Executors.newCachedThreadPool();
    public static void main(String[] args) {
        /**
         * Provider
         */
        service.submit(() -> {
            try {
                synchronousQueue.put("liu");
            }catch (Exception e){
                e.printStackTrace();
            }
            System.out.println("Consumer finished spending");
        });
        /**
         * Consumer
         */
        service.submit(() ->{
            try {
                synchronousQueue.take();
            }catch (Exception e){
                e.printStackTrace();
            }
            System.out.println("take over");
        });
    }
}


LinkedBlockingDeque


LinkedBlockingDeque是一个双向队列,底层使用单链表实现,任何一段都可进行元素的读写操作,在初始化LinkedBlockingDeque的时候, 我们可以指定容量,也可不指定,如果不指定,则容量为Integer.MAX_VALUE,


注:Deque是双端队列,而Queue是单端队列,双端意思是两端都可以进行读写操作,而单端则只能从一端进,一端出(FIFO)


public LinkedBlockingDeque() {
        this(Integer.MAX_VALUE);
}


package thread.customthreadpool;
import java.util.concurrent.LinkedBlockingDeque;
public class LinkedBlockingDequeTest {
    private static final LinkedBlockingDeque<Integer> deque = new LinkedBlockingDeque<>();
    public static void main(String[] args) throws InterruptedException {
        deque.put(1);
        deque.put(2);
        deque.put(3);
        deque.put(4);
        deque.put(5);
        System.out.println(deque);
        System.out.println("deque size  "+deque.size());
        deque.take();
        deque.take();
        deque.take();
        deque.take();
        deque.take();
        System.out.println(deque);
        System.out.println("deque size  "+deque.size());
    }
}


LinkedBlockingQueue


底层基于单向连表实现,是一个单向队列,具有先进先出(FIFO)特点,使用了ReentrantLock来做并发控制,读写操作都上锁


private final ReentrantLock putLock = new ReentrantLock();
    public void put(E e) throws InterruptedException {
        if (e == null) throw new NullPointerException();
        int c = -1;
        Node<E> node = new Node<E>(e);
        final ReentrantLock putLock = this.putLock;
        final AtomicInteger count = this.count;
        putLock.lockInterruptibly();
        try {
            while (count.get() == capacity) {
                notFull.await();
            }
            enqueue(node);
            c = count.getAndIncrement();
            if (c + 1 < capacity)
                notFull.signal();
        } finally {
            putLock.unlock();
        }
        if (c == 0)
            signalNotEmpty();
    }
    public E take() throws InterruptedException {
        E x;
        int c = -1;
        final AtomicInteger count = this.count;
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lockInterruptibly();
        try {
            while (count.get() == 0) {
                notEmpty.await();
            }
            x = dequeue();
            c = count.getAndDecrement();
            if (c > 1)
                notEmpty.signal();
        } finally {
            takeLock.unlock();
        }
        if (c == capacity)
            signalNotFull();
        return x;
    }


DelayDeque


DelayDeque是一个无界队列,添加进DelayDeque的元素会经过compareTo方法计算,然后按照时间 进行排序,排在队头的元素是最早到期的,越往后到期时间越长,DelayDeque只能接受Delayed接口类型,队列里的元素并不是按照先进先出的规则,而是按照过期时间


package thread.customthreadpool.delayDeque;
import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit;
public class MyDelayed implements Delayed {
    private final String taskName ;
    private final long nowTime = System.currentTimeMillis();
    private final long expireTime ;
    public MyDelayed(String taskName,long expireTime) {
        this.taskName = taskName;
        this.expireTime = expireTime;
    }
    @Override
    public long getDelay(TimeUnit unit) {
        return unit.convert((nowTime+expireTime) - System.currentTimeMillis(),TimeUnit.MILLISECONDS);
    }
    @Override
    public int compareTo(Delayed o) {
        MyDelayed myDelayed = (MyDelayed) o;
        return (int) (this.getDelay(TimeUnit.MILLISECONDS) - o.getDelay(TimeUnit.MILLISECONDS));
    }
    @Override
    public String toString() {
        return "MyDelayed{" +
                "taskName='" + taskName + '\'' +
                ", nowTime=" + nowTime +
                ", expireTime=" + expireTime +
                '}';
    }
}


package thread.customthreadpool.delayDeque;
import java.util.concurrent.*;
public class MyDelayQueue {
    private static final DelayQueue<MyDelayed> delayQueue = new DelayQueue<>();
    private static final ExecutorService service = Executors.newCachedThreadPool();
    public static void main(String[] args) throws InterruptedException {
        service.submit(() -> {
            delayQueue.put(new MyDelayed("A-Task",5000));
            delayQueue.put(new MyDelayed("B-Task",4000));
            delayQueue.put(new MyDelayed("C-Task",3000));
            delayQueue.put(new MyDelayed("D-Task",2000));
            delayQueue.put(new MyDelayed("E-Task",1000));
        });
        while (true){
            System.out.println(delayQueue.take());
        }
    }
}


应用场景


1.美团外卖订单:当我们下单后没付款 ,30分钟后将自动取消订单


2.缓存,对于某些任务,需要在特定的时间清理;


and so on


LinkedTransferQueue


当消费线程从队列中取元素时,如果队列为空,那么生成一个为null的节点,消费者线程就一直等待,此时如果生产者线程发现队列中有一个null节点, 它就不入队了,而是将元素填充到这个null节点并唤醒消费者线程,然后消费者线程取走元素。


LinkedTransferQueue是 SynchronousQueue 和 LinkedBlockingQueue 的整合,性能比较高,因为没有锁操作, SynchronousQueue不能存储元素,而LinkedTransferQueue能存储元素,


PriorityBlockingQueue


PriorityBlockingQueue是一个无界的阻塞队列,同时是一个支持优先级的队列,读写操作都是基于ReentrantLock, 内部使用堆算法保证每次出队都是优先级最高的元素


public E take() throws InterruptedException {
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        E result;
        try {
            while ( (result = dequeue()) == null)
                notEmpty.await();
        } finally {
            lock.unlock();
        }
        return result;
}


目录
相关文章
|
6天前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。
|
3月前
|
Java 调度 数据库
Java并发编程:深入理解线程池
在Java并发编程的海洋中,线程池是一艘强大的船,它不仅提高了性能,还简化了代码结构。本文将带你潜入线程池的深海,探索其核心组件、工作原理及如何高效利用线程池来优化你的并发应用。
|
3月前
|
存储 监控 Java
Java多线程优化:提高线程池性能的技巧与实践
Java多线程优化:提高线程池性能的技巧与实践
113 1
|
18天前
|
监控 安全 Java
在 Java 中使用线程池监控以及动态调整线程池时需要注意什么?
【10月更文挑战第22天】在进行线程池的监控和动态调整时,要综合考虑多方面的因素,谨慎操作,以确保线程池能够高效、稳定地运行,满足业务的需求。
96 38
|
13天前
|
缓存 安全 C++
C++无锁队列:解锁多线程编程新境界
【10月更文挑战第27天】
26 7
|
13天前
|
消息中间件 存储 安全
|
18天前
|
Prometheus 监控 Cloud Native
JAVA线程池监控以及动态调整线程池
【10月更文挑战第22天】在 Java 中,线程池的监控和动态调整是非常重要的,它可以帮助我们更好地管理系统资源,提高应用的性能和稳定性。
54 4
|
18天前
|
Prometheus 监控 Cloud Native
在 Java 中,如何使用线程池监控以及动态调整线程池?
【10月更文挑战第22天】线程池的监控和动态调整是一项重要的任务,需要我们结合具体的应用场景和需求,选择合适的方法和策略,以确保线程池始终处于最优状态,提高系统的性能和稳定性。
80 2
|
21天前
|
缓存 监控 Java
java中线程池的使用
java中线程池的使用
|
1月前
|
存储 安全 Java
【用Java学习数据结构系列】探索栈和队列的无尽秘密
【用Java学习数据结构系列】探索栈和队列的无尽秘密
29 2