✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在当今信息时代,数据分类是一项重要的任务,对于许多领域的研究和应用都具有关键性的作用。为了实现高效准确的数据分类,许多机器学习算法被提出和应用。其中,鲸鱼算法和极限学习机(ElM)神经网络是两个备受关注的技术。本文将介绍鲸鱼算法优化ElM神经网络在数据分类中的应用。
鲸鱼算法是一种启发式优化算法,灵感来源于鲸鱼的觅食行为。鲸鱼通过个体行为和社会行为的相互作用,在复杂环境中寻找最佳的食物来源。这种行为启发了鲸鱼算法的设计,使其能够在搜索空间中高效地寻找全局最优解。鲸鱼算法具有全局搜索能力强、易于实现和收敛速度快等特点,因此在许多优化问题中取得了良好的效果。
极限学习机(ElM)神经网络是一种单隐藏层前馈神经网络,具有快速训练和良好的泛化能力。相比于传统的神经网络算法,ElM神经网络不需要对隐藏层的权重进行迭代调整,而是通过随机初始化权重后直接求解输出层的权重,从而大大减少了训练时间。此外,ElM神经网络还能够处理高维数据和大规模数据集,并且在噪声环境下也能保持较好的性能。
将鲸鱼算法与ElM神经网络相结合,可以充分发挥它们各自的优势。通过鲸鱼算法优化ElM神经网络的权重和偏置,可以提高ElM神经网络的分类性能。具体而言,鲸鱼算法可以在搜索空间中寻找到更优的权重和偏置组合,从而使ElM神经网络能够更准确地进行数据分类。此外,鲸鱼算法还可以帮助ElM神经网络避免陷入局部最优解,提高整体的分类准确率。
为了验证鲸鱼算法优化ElM神经网络在数据分类中的有效性,我们进行了一系列实验。首先,我们选择了几个经典的数据集,包括Iris、MNIST和CIFAR-10等,用于测试算法的性能。然后,我们分别使用ElM神经网络和鲸鱼算法优化ElM神经网络进行数据分类,并比较它们的分类准确率和收敛速度。实验结果表明,鲸鱼算法优化ElM神经网络在不同数据集上都取得了较好的分类性能,相比于传统的ElM神经网络,具有更高的准确率和更快的收敛速度。
📣 部分代码
%_________________________________________________________________________%% 鲸鱼优化算法 %%_________________________________________________________________________%% The Whale Optimization Algorithmfunction [Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leaderLeader_pos=zeros(1,dim);Leader_score=inf; %change this to -inf for maximization problems%Initialize the positions of search agentsPositions=initialization(SearchAgents_no,dim,ub,lb);Convergence_curve=zeros(1,Max_iter);t=0;% Loop counter% Main loopwhile t<Max_iter disp(['第',num2str(t),'次迭代']); for i=1:size(Positions,1) % Return back the search agents that go beyond the boundaries of the search space Flag4ub=Positions(i,:)>ub; Flag4lb=Positions(i,:)<lb; Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; % Calculate objective function for each search agent fitness=fobj(Positions(i,:)); % Update the leader if fitness<Leader_score % Change this to > for maximization problem Leader_score=fitness; % Update alpha Leader_pos=Positions(i,:); end end a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3) % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12) a2=-1+t*((-1)/Max_iter); % Update the Position of search agents for i=1:size(Positions,1) r1=rand(); % r1 is a random number in [0,1] r2=rand(); % r2 is a random number in [0,1] A=2*a*r1-a; % Eq. (2.3) in the paper C=2*r2; % Eq. (2.4) in the paper b=1; % parameters in Eq. (2.5) l=(a2-1)*rand+1; % parameters in Eq. (2.5) p = rand(); % p in Eq. (2.6) for j=1:size(Positions,2) if p<0.5 if abs(A)>=1 rand_leader_index = floor(SearchAgents_no*rand()+1); X_rand = Positions(rand_leader_index, :); D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7) Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8) elseif abs(A)<1 D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1) Positions(i,j)=Leader_pos(j)-A*D_Leader; % Eq. (2.2) end elseif p>=0.5 distance2Leader=abs(Leader_pos(j)-Positions(i,j)); % Eq. (2.5) Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j); end end end t=t+1; Convergence_curve(t)=Leader_score;end
⛳️ 运行结果
🔗 参考文献
[1] 赖敏,陈国彬,刘超,等.CAWOA-ELM混合模型的锅炉NOx排放量预测[J].动力工程学报, 2018, 38(11):19-24.DOI:CNKI:SUN:DONG.0.2018-11-003.
[2] 王鹏翔,沈娟,王菁旸,等.基于PCA-LMD-WOA-ELM的短期光伏功率预测[J].陕西电力, 2022(006):050.
[3] 陈资,李昌.基于KPCA-WOA-ELM的爆破飞石距离预测[J].爆破器材, 2022(002):051.
[4] 王珂珂,牛东晓,甄皓,等.基于WOA-ELM模型的中国碳排放预测研究[J].生态经济, 2020, 36(8):8.