WOA-ELM分类预测 | Matlab 鲸鱼算法(WOA)优化极限学习机(ELM)的分类预测

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: WOA-ELM分类预测 | Matlab 鲸鱼算法(WOA)优化极限学习机(ELM)的分类预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在当今信息时代,数据分类是一项重要的任务,对于许多领域的研究和应用都具有关键性的作用。为了实现高效准确的数据分类,许多机器学习算法被提出和应用。其中,鲸鱼算法和极限学习机(ElM)神经网络是两个备受关注的技术。本文将介绍鲸鱼算法优化ElM神经网络在数据分类中的应用。

鲸鱼算法是一种启发式优化算法,灵感来源于鲸鱼的觅食行为。鲸鱼通过个体行为和社会行为的相互作用,在复杂环境中寻找最佳的食物来源。这种行为启发了鲸鱼算法的设计,使其能够在搜索空间中高效地寻找全局最优解。鲸鱼算法具有全局搜索能力强、易于实现和收敛速度快等特点,因此在许多优化问题中取得了良好的效果。

极限学习机(ElM)神经网络是一种单隐藏层前馈神经网络,具有快速训练和良好的泛化能力。相比于传统的神经网络算法,ElM神经网络不需要对隐藏层的权重进行迭代调整,而是通过随机初始化权重后直接求解输出层的权重,从而大大减少了训练时间。此外,ElM神经网络还能够处理高维数据和大规模数据集,并且在噪声环境下也能保持较好的性能。

将鲸鱼算法与ElM神经网络相结合,可以充分发挥它们各自的优势。通过鲸鱼算法优化ElM神经网络的权重和偏置,可以提高ElM神经网络的分类性能。具体而言,鲸鱼算法可以在搜索空间中寻找到更优的权重和偏置组合,从而使ElM神经网络能够更准确地进行数据分类。此外,鲸鱼算法还可以帮助ElM神经网络避免陷入局部最优解,提高整体的分类准确率。

为了验证鲸鱼算法优化ElM神经网络在数据分类中的有效性,我们进行了一系列实验。首先,我们选择了几个经典的数据集,包括Iris、MNIST和CIFAR-10等,用于测试算法的性能。然后,我们分别使用ElM神经网络和鲸鱼算法优化ElM神经网络进行数据分类,并比较它们的分类准确率和收敛速度。实验结果表明,鲸鱼算法优化ElM神经网络在不同数据集上都取得了较好的分类性能,相比于传统的ElM神经网络,具有更高的准确率和更快的收敛速度。

📣 部分代码

%_________________________________________________________________________%% 鲸鱼优化算法             %%_________________________________________________________________________%% The Whale Optimization Algorithmfunction [Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leaderLeader_pos=zeros(1,dim);Leader_score=inf; %change this to -inf for maximization problems%Initialize the positions of search agentsPositions=initialization(SearchAgents_no,dim,ub,lb);Convergence_curve=zeros(1,Max_iter);t=0;% Loop counter% Main loopwhile t<Max_iter    disp(['第',num2str(t),'次迭代']);    for i=1:size(Positions,1)                % Return back the search agents that go beyond the boundaries of the search space        Flag4ub=Positions(i,:)>ub;        Flag4lb=Positions(i,:)<lb;        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;                % Calculate objective function for each search agent        fitness=fobj(Positions(i,:));                % Update the leader        if fitness<Leader_score % Change this to > for maximization problem            Leader_score=fitness; % Update alpha            Leader_pos=Positions(i,:);        end            end        a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)        % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)    a2=-1+t*((-1)/Max_iter);        % Update the Position of search agents     for i=1:size(Positions,1)        r1=rand(); % r1 is a random number in [0,1]        r2=rand(); % r2 is a random number in [0,1]                A=2*a*r1-a;  % Eq. (2.3) in the paper        C=2*r2;      % Eq. (2.4) in the paper                        b=1;               %  parameters in Eq. (2.5)        l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)                p = rand();        % p in Eq. (2.6)                for j=1:size(Positions,2)                        if p<0.5                   if abs(A)>=1                    rand_leader_index = floor(SearchAgents_no*rand()+1);                    X_rand = Positions(rand_leader_index, :);                    D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)                    Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)                                    elseif abs(A)<1                    D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1)                    Positions(i,j)=Leader_pos(j)-A*D_Leader;      % Eq. (2.2)                end                            elseif p>=0.5                              distance2Leader=abs(Leader_pos(j)-Positions(i,j));                % Eq. (2.5)                Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);                            end                    end    end    t=t+1;    Convergence_curve(t)=Leader_score;end

⛳️ 运行结果

🔗 参考文献

[1] 赖敏,陈国彬,刘超,等.CAWOA-ELM混合模型的锅炉NOx排放量预测[J].动力工程学报, 2018, 38(11):19-24.DOI:CNKI:SUN:DONG.0.2018-11-003.

[2] 王鹏翔,沈娟,王菁旸,等.基于PCA-LMD-WOA-ELM的短期光伏功率预测[J].陕西电力, 2022(006):050.

[3] 陈资,李昌.基于KPCA-WOA-ELM的爆破飞石距离预测[J].爆破器材, 2022(002):051.

[4] 王珂珂,牛东晓,甄皓,等.基于WOA-ELM模型的中国碳排放预测研究[J].生态经济, 2020, 36(8):8.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合



相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
3天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的优化算法及其应用
本文旨在探讨深度学习中常用的优化算法,包括梯度下降、动量方法、AdaGrad、RMSProp和Adam等。通过分析每种算法的原理、优缺点及适用场景,揭示它们在训练深度神经网络过程中的关键作用。同时,结合具体实例展示这些优化算法在实际应用中的效果,为读者提供选择合适优化算法的参考依据。
|
8天前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
26 2
|
10天前
|
机器学习/深度学习 算法 物联网
探究操作系统的心脏:调度算法的演变与优化
本文旨在深入探讨操作系统中核心组件——调度算法的发展脉络与优化策略。通过分析从单任务到多任务、实时系统的演进过程,揭示调度算法如何作为系统性能瓶颈的解决关键,以及在云计算和物联网新兴领域中的应用前景。不同于传统摘要,本文将注重于概念阐释与实例分析相结合,为读者提供直观且全面的理解视角。
|
12天前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
30 4
|
15天前
|
算法
基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真
该程序基于蚁群优化算法(ACO)为无人机(UAV)规划最优巡检路线,将无人机视作“蚂蚁”,巡检点作为“食物源”,目标是最小化总距离、能耗或时间。使用MATLAB 2022a版本实现,通过迭代更新信息素浓度来优化路径。算法包括初始化信息素矩阵、蚂蚁移动与信息素更新,并在满足终止条件前不断迭代,最终输出最短路径及其长度。
|
17天前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
2月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
123 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
2月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
95 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
下一篇
无影云桌面