Jmeter性能测试报告解析

简介:

 Jmeter报告解析
  1、Aggregate Report 解析
  Aggregate Report 是 JMeter 常用的一个 Listener,中文被翻译为“聚合报告”。今天再次有同行问到这个报告中的各项数据表示什么意思,顺便在这里公布一下,以备大家查阅。
  如果大家都是做Web应用的性能测试,例如只有一个登录的请求,那么在Aggregate Report中,会显示一行数据,共有10个字段,含义分别如下。
  Label:每个 JMeter 的 element(例如 HTTP Request)都有一个 Name 属性,这里显示的就是 Name 属性的值
  #Samples:表示你这次测试中一共发出了多少个请求,如果模拟10个用户,每个用户迭代10次,那么这里显示100
  Average:平均响应时间——默认情况下是单个 Request 的平均响应时间,当使用了 Transaction Controller 时,也可以以Transaction 为单位显示平均响应时间
  Median:中位数,也就是 50% 用户的响应时间
  90% Line:90% 用户的响应时间
  Note:关于 50% 和 90% 并发用户数的含义,请参考下文
  http://www.cnblogs.com/jackei/archive/2006/11/11/557972.html
  Min:最小响应时间
  Max:最大响应时间
  Error%:本次测试中出现错误的请求的数量/请求的总数
  Throughput:吞吐量——默认情况下表示每秒完成的请求数(Request per Second),当使用了 Transaction Controller 时,也可以表示类似 LoadRunner 的 Transaction per Second 数
  KB/Sec:每秒从服务器端接收到的数据量,相当于LoadRunner中的Throughput/Sec
  基本知识:
  1、吞吐量:是指在没有帧丢失的情况下,设备能够接受的最大速率。
  2、存储的最小单位是字节Byte,对于存储单位,有以下几个单位,GB、MB和KB,那么这三者之间的换算关系是:1GB=1024MB,1MB=1024KB,1KB=1024Bytes。
  Bit :“位”,称为bit,也就是比特,有的时候也称为位。一个字节为8位二进制表示。
  Byte:“字节”,一个字节就是8比特。
  3、Mbps (million bits per second 兆位/秒) 代表每秒传输1,000,000比特。该缩写用来描述数据传输速度。例如:4Mbps=每秒钟传输4M比特。
  数据传输速率的单位,字母b(bit)是比特和字母 B (Byte)是字节。
  4、吞吐量与带宽的区分:吞吐量和带宽是很容易搞混的一个词,两者的单位都是Mbps.先让我们来看两者对应的英语,吞吐量:throughput ; 带宽: Max net bitrate 。当我们讨论通信链路的带宽时,一般是指链路上每秒所能传送的比特数。我们可以说以太网的带宽是10Mbps。但是,我们需要区分链路上的可用带宽(带宽)与实际链路中每秒所能传送的比特数(吞吐量)。我们倾向于用“吞吐量”一次来表示一个系统的测试性能。这样,因为实现受各种低效率因素的影响,所以由一段带宽为10Mbps的链路连接的一对节点可能只达到2Mbps的吞吐量。这样就意味着,一个主机上的应用能够以2Mbps的速度向另外的一个主机发送数据。
  5、方差和标准差都是用来描述一组数据的波动性的(集中还是分散),标准差的平方就是方差。方差越大,数据的波动越大。

最新内容请见作者的GitHub页:http://qaseven.github.io/

相关文章
|
5月前
|
Web App开发 人工智能 JavaScript
主流自动化测试框架的技术解析与实战指南
本内容深入解析主流测试框架Playwright、Selenium与Cypress的核心架构与适用场景,对比其在SPA测试、CI/CD、跨浏览器兼容性等方面的表现。同时探讨Playwright在AI增强测试、录制回放、企业部署等领域的实战优势,以及Selenium在老旧系统和IE兼容性中的坚守场景。结合六大典型场景,提供技术选型决策指南,并展望AI赋能下的未来测试体系。
|
5月前
|
存储 人工智能 算法
AI测试平台实战:深入解析自动化评分和多模型对比评测
在AI技术迅猛发展的今天,测试工程师面临着如何高效评估大模型性能的全新挑战。本文将深入探讨AI测试平台中自动化评分与多模型对比评测的关键技术与实践方法,为测试工程师提供可落地的解决方案。
|
6月前
|
XML jenkins 机器人
JMeter+Ant+Jenkins实现接口自动化测试持续集成
本文介绍了如何使用Ant生成JMeter接口测试报告,并集成到Jenkins中实现自动化测试。内容涵盖Ant与JMeter环境配置、build.xml文件设置、测试执行及报告生成,同时包括Jenkins插件安装、项目配置和钉钉消息通知的集成,帮助实现持续测试与结果可视化。
849 0
|
3月前
|
监控 Java 关系型数据库
面试性能测试总被刷?学员真实遇到的高频问题全解析!
面试常被性能测试题难住?其实考的不是工具,而是分析思维。从脚本编写到瓶颈定位,企业更看重系统理解与实战能力。本文拆解高频面试题,揭示背后考察逻辑,并通过真实项目训练,帮你构建性能测试完整知识体系,实现从“会操作”到“能解决问题”的跨越。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
1134 8
|
4月前
|
人工智能 自然语言处理 前端开发
深度解析Playwright MCP:功能、优势与挑战,AI如何提升测试效率与覆盖率
Playwright MCP通过AI与浏览器交互,实现自然语言驱动的自动化测试。它降低门槛、提升效率,助力测试工程师聚焦高价值工作,是探索性测试与快速验证的新利器。
|
5月前
|
前端开发 Java jenkins
Jmeter压力测试工具全面教程和使用技巧。
JMeter是一个能够模拟高并发请求以检查应用程序各方面性能的工具,包括但不限于前端页面、后端服务及数据库系统。熟练使用JMeter不仅能够帮助发现性能瓶颈,还能在软件开发早期就预测系统在面对真实用户压力时的表现,确保软件质量和用户体验。在上述介绍的基础上,建议读者结合官方文档和社区最佳实践,持续深入学习和应用。
1149 10
|
4月前
|
人工智能 边缘计算 搜索推荐
AI产品测试学习路径全解析:从业务场景到代码实践
本文深入解析AI测试的核心技能与学习路径,涵盖业务理解、模型指标计算与性能测试三大阶段,助力掌握分类、推荐系统、计算机视觉等多场景测试方法,提升AI产品质量保障能力。
|
5月前
|
人工智能 资源调度 jenkins
精准化回归测试:大厂实践与技术落地解析
在高频迭代时代,全量回归测试成本高、效率低,常导致关键 bug 漏测。精准化测试通过代码变更影响分析,智能筛选高价值用例,显著提升测试效率与缺陷捕获率,实现降本增效。已被阿里、京东、腾讯等大厂成功落地,成为质量保障的新趋势。
|
6月前
|
JavaScript 前端开发 测试技术
Playwright自动化测试系列课(4) | 异步加载克星:自动等待 vs 智能等待策略深度解析​
本文深度解析Playwright自动化测试中的等待策略,对比自动等待(零配置防御机制)与智能等待(精准控制异步场景)的核心差异。通过实战案例讲解等待机制的选择标准、常见失效原因及调试技巧,帮助开发者有效解决页面异步加载问题,提升测试脚本的稳定性和执行效率。

热门文章

最新文章

推荐镜像

更多
  • DNS