GFS分布式文件系统

简介: GFS分布式文件系统

一、GFS概述

1.1 GFS简介

  • GlusterFS是一个开源的分布式文件系统。
  • 由存储服务器、客户端以及NFS/Samba存储网关(可选,根据需要选择使用)组成。
  • 没有元数据服务器组件,这有助于提升整个系统的性能、可靠性和稳定性。
  • MFS(传统的分布式文件系统技术)


传统的分布式文件系统大多通过元服务器来存储元数据,元数据包含存储节点上的目录信息、目录结构等。这样的设计在浏览目录时效率高,但是也存在一些缺陷,例如单点故障。一旦元数据服务器出现故障,即使节点具备再高的冗余性,整个存储系统也将崩溃。

GlusterFS:

  • 而Glusteres分布式文件系统是基于无元服务器的设计,数据横向扩展能力强,具备较高的可靠性及存储效率。(不存在元服务器单点故障的问题)
  • GlusterFS同时也是Scale-Out(横向扩展)存储解决方案Gluster的核心,在存储数据方面具有强大的横向扩展能力,通过扩展能够支持数PB存储容量和处理数千客户端。
  • GlusterFS支持借助 TCP/IP 或 InfiniBandRDMA 网络(一种支持多并发链接的技术,具有高带宽、低时延、高扩展性的特点)将物理分散分布的存储资源汇聚在一起,统一提供存储服务,并使用统一全局命名空间来管理数据。
  • C/S模式

1.2 GFS特点

1.2.1. 扩展性和高性能

GlusterFS利用双重特性来提供高容量存储解决方案。

(1)Scale-Out架构允许通过简单地增加存储节点的方式来提高存储容量和性能(磁盘、计算和I/O资源都可以独立增加),支持10GbE和 InfiniBand等高速网络互联。

(2)Gluster弹性哈希(ElasticHash)解决了GlusterFS对元数据服务器的依赖,改善了单点故障和性能瓶颈,真正实现了并行化数据访问。GlusterFS采用弹性哈希算法在存储池中可以智能地定位任意数据分片(将数据分片存储在不同节点上),不需要查看索引或者向元数据服务器查询。

1.2.2. 高可用性

GlusterFS可以对文件进行自动复制,如镜像或多次复制,从而确保数据总是可以访问,甚至是在硬件故障的情况下也能正常访问。

当数据出现不一致时,自我修复功能能够把数据恢复到正确的状态,数据的修复是以增量的方式在后台执行,几乎不会产生性能负载。

GlusterFS可以支持所有的存储,因为它没有设计自己的私有数据文件格式,而是采用操作系统中主流标准的磁盘文件系统(如EXT3、XFS等)来存储文件,因此数据可以使用传统访问磁盘的方式被访问。

1.2.3. 全局统一命名空间

分布式存储中,将所有节点的命名空间整合为统一命名空间,将整个系统的所有节点的存储容量组成一个大的虚拟存储池,供前端主机访问这些节点完成数据读写操作。注:可以理解为目录,一个目录就是一个命名空间。同一个命名空间内不能存在2个相同名称的文件。

1.2.4. 弹性卷管理(Raid级别)

GlusterFS通过将数据储存在逻辑卷中,逻辑卷从逻辑存储池进行独立逻辑划分而得到。 逻辑存储池可以在线进行增加和移除,不会导致业务中断。逻辑卷可以根据需求在线增长和缩减,并可以在多个节点中实现负载均衡。

文件系统配置也可以实时在线进行更改并应用,从而可以适应工作负载条件变化或在线性能调优。

1.2.5. 基于标准协议

Gluster 存储服务支持 NFS、CIFS、HTTP、FTP、SMB 及 Gluster原生协议,完全与 POSIX 标准(可移植操作系统接口)兼容。

现有应用程序不需要做任何修改就可以对Gluster 中的数据进行访问,也可以使用专用 API 进行访问。

1.3 GFS术语

1.3.1. Brick(存储块)

指可信主机池中由主机提供的用于物理存储的专用分区,是GlusterFS中的基本存储单元,同时也是可信存储池中服务器上对外提供的存储目录。

存储目录的格式由服务器和目录的绝对路径构成,表示方法为 SERVER:EXPORT,如 192.168.41.46:/data/mydir/。

1.3.2. Volume(逻辑卷)

一个逻辑卷是一组 Brick 的集合。卷是数据存储的逻辑设备,类似于 LVM 中的逻辑卷。大部分 Gluster 管理操作是在卷上进行的。

1.3.3. FUSE

是一个内核模块,允许用户创建自己的文件系统,无须修改内核代码。

1.3.4. VFS

内核空间对用户空间提供的访问磁盘的接口。

1.3.5. Glusterd(后台管理进程)

在存储群集中的每个节点上都要运行。

1.4 GFS工作原理

(1)客户端或应用程序通过 GFS 的挂载点访问数据。

(2)linux系统内核使用 system call 通过 VFS API 收到请求并处理。

(3)VFS 将数据递交给 FUSE 内核文件系统,并向系统注册一个实际的文件系统 FUSE,而 FUSE 文件系统则是将数据处理后交给/dev/fuse(存储在内存中)

(4)/dev/fuse通过poll指针指向 GFS client 进程

(5)GFS client 收到数据后,client 根据配置文件的配置对数据进行处理。

(6)经过 GFS client 处理后,通过TCP网络模式传给GFS server,再通过网络将数据传给VFS(虚拟接口),VFS转发到服务器存储设备上。

image.png

1.5 弹性 HASH 算法

弹性 HASH 算法是 Davies-Meyer 算法的具体实现,通过 HASH 算法可以得到一个 32 位的整数范围的 hash 值,假设逻辑卷中有 N 个存储单位 Brick,则 32 位的整数范围将被划分为 N 个连续的子空间,每个空间对应一个 Brick。

当用户或应用程序访问某一个命名空间时,通过对该命名空间计算 HASH 值,根据该 HASH 值所对应的 32 位整数空间定位数据所在的 Brick。

弹性 HASH 算法的优点:

  • 保证数据平均分布在每一个 Brick 中。
  • 解决了对元数据服务器的依赖,进而解决了单点故障以及访问瓶颈。

二、GFS的卷类型

GlusterFS 支持七种卷,即分布式卷、条带卷、复制卷、分布式条带卷、分布式复制卷、条带复制卷和分布式条带复制卷。

2.1 分布式卷(Distribute volume)

文件通过 HASH 算法分布到所有 Brick Server 上,这种卷是 GlusterFS 的默认卷;以文件为单位根据 HASH 算法散列到不同的 Brick,其实只是扩大了磁盘空间,如果有一块磁盘损坏,数据也将丢失,属于文件级的 RAID0, 不具有容错能力。

在该模式下,并没有对文件进行分块处理,文件直接存储在某个 Server 节点上。 由于直接使用本地文件系统进行文件存储,所以存取效率并没有提高,反而会因为网络通信的原因而有所降低。

分布式卷具有如下特点:

  • 文件分布在不同的服务器,不具备冗余性。
  • 更容易和廉价地扩展卷的大小。
  • 单点故障会造成数据丢失。
  • 依赖底层的数据保护。
  • 创建一个名为dis-volume的分布式卷,文件将根据HASH分布在server1:/dir1、server2:/dir2和server3:/dir3中
gluster volume create dis-volume server1:/dir1 server2:/dir2 server3:/dir3

2.2 条带卷(Stripe volume)

类似 RAID0,文件被分成数据块并以轮询的方式分布到多个 Brick Server 上,文件存储以数据块为单位,支持大文件存储, 文件越大,读取效率越高,但是不具备冗余性。

条带卷特点:

  • 数据被分割成更小块分布到块服务器群中的不同条带区。
  • 分布减少了负载且更小的文件加速了存取的速度。
  • 没有数据冗余。
  • 创建了一个名为stripe-volume的条带卷,文件将被分块轮询的存储在Server1:/dir1和Server2:/dir2两个Brick中
gluster volume create stripe-volume stripe 2 transport tcp server1:/dir1 server2:/dir2

2.3 复制卷(Replica volume)

将文件同步到多个 Brick 上,使其具备多个文件副本,属于文件级 RAID 1,具有容错能力。因为数据分散在多个 Brick 中,所以读性能得到很大提升,但写性能下降。

复制卷具备冗余性,即使一个节点损坏,也不影响数据的正常使用。但因为要保存副本,所以磁盘利用率较低。

复制卷特点:

  • 卷中所有的服务器均保存一个完整的副本。
  • 卷的副本数量可由客户创建的时候决定,但复制数必须等于卷中 Brick 所包含的存储服务器数。
  • 至少由两个块服务器或更多服务器。
  • 具备冗余性。

创建名为rep-volume的复制卷,文件将同时存储两个副本,分别在Server1:/dir1和Server2:/dir2两个Brick中

gluster volume create rep-volume replica 2 transport tcp server1:/dir1 server2:/dir2

2.4 分布式条带卷(Distribute Stripe volume)

Brick Server 数量是条带数(数据块分布的 Brick 数量)的倍数,兼具分布式卷和条带卷的特点。 主要用于大文件访问处理,创建一个分布式条带卷最少需要 4 台服务器。

创建一个名为dis-stripe的分布式条带卷,配置分布式的条带卷时,卷中Brick所包含的存储服务器数必须是条带数的倍数(>=2倍)。Brick 的数量是 4(Server1:/dir1、Server2:/dir2、Server3:/dir3 和 Server4:/dir4),条带数为 2(stripe 2)

gluster volume create dis-stripe stripe 2 transport tcp server1:/dir1 server2:/dir2 server3:/dir3 server4:/dir4

创建卷时,存储服务器的数量如果等于条带或复制数,那么创建的是条带卷或者复制卷;如果存储服务器的数量是条带或复制数的 2 倍甚至更多,那么将创建的是分布式条带卷或分布式复制卷。

2.5 分布式复制卷(Distribute Replica volume)

Brick Server 数量是镜像数(数据副本数量)的倍数,兼具分布式卷和复制卷的特点。主要用于需要冗余的情况下。

创建一个名为dis-rep的分布式复制卷,配置分布式的复制卷时,卷中Brick所包含的存储服务器数必须是复制数的倍数(>=2倍)。Brick 的数量是 4(Server1:/dir1、Server2:/dir2、Server3:/dir3 和 Server4:/dir4),复制数为 2(replica 2)

gluster volume create dis-rep replica 2 transport tcp server1:/dir1 server2:/dir2 server3:/dir3 server4:/dir4

2.6 条带复制卷(Stripe Replca volume)

类似 RAID 10,同时具有条带卷和复制卷的特点。

2.7 分布式条带复制卷(Distribute Stripe Replicavolume)

三种基本卷的复合卷,通常用于类 Map Reduce 应用。

三、部署GFS

Node1节点:node1/192.168.147.100     磁盘:/dev/sdb1      挂载点:/data/sdb1
                       /dev/sdc1           /data/sdc1
                       /dev/sdd1           /data/sdd1
                       /dev/sde1           /data/sde1
Node2节点:node2/192.168.147.101     磁盘:/dev/sdb1      挂载点:/data/sdb1
                       /dev/sdc1           /data/sdc1
                       /dev/sdd1           /data/sdd1
                       /dev/sde1           /data/sde1
Node3节点:node3/192.168.147.102     磁盘:/dev/sdb1      挂载点:/data/sdb1
                       /dev/sdc1           /data/sdc1
                       /dev/sdd1           /data/sdd1
                       /dev/sde1           /data/sde1
Node4节点:node4/192.168.147.103     磁盘:/dev/sdb1      挂载点:/data/sdb1
                       /dev/sdc1           /data/sdc1
                       /dev/sdd1           /data/sdd1
                       /dev/sde1           /data/sde1
客户端节点:192.168.147.104

3.1 关闭防火墙

systemctl stop firewalld
setenforce 0

3.2 磁盘分区,并挂载

vim /opt/fdisk.sh
#!/bin/bash
NEWDEV=`ls /dev/sd* | grep -o 'sd[b-z]' | uniq`
for VAR in $NEWDEV
do
   echo -e "n\np\n\n\n\nw\n" | fdisk /dev/$VAR &> /dev/null
   mkfs.xfs /dev/${VAR}"1" &> /dev/null
   mkdir -p /data/${VAR}"1" &> /dev/null
   echo "/dev/${VAR}"1" /data/${VAR}"1" xfs defaults 0 0" >> /etc/fstab
done
mount -a &> /dev/null
chmod +x /opt/fdisk.sh
cd /opt/
./fdisk.sh

image.png

image.png

3.3 修改主机名,配置/etc/hosts文件

#以Node1节点为例:
hostnamectl set-hostname node1
echo "192.168.147.100 node1" >> /etc/hosts
echo "192.168.147.101 node2" >> /etc/hosts
echo "192.168.147.102 node3" >> /etc/hosts
echo "192.168.147.103 node4" >> /etc/hosts

image.png

3.4 安装、启动GlusterFS(所有node节点上操作)

#将gfsrepo 软件上传到/opt目录下
cd /etc/yum.repos.d/
mkdir repo.bak
mv *.repo repo.bak
vim glfs.repo
[glfs]
name=glfs
baseurl=file:///opt/gfsrepo
gpgcheck=0
enabled=1
yum clean all && yum makecache
#yum -y install centos-release-gluster      #如采用官方 YUM 源安装,可以直接指向互联网仓库
yum -y install glusterfs glusterfs-server glusterfs-fuse glusterfs-rdma
systemctl start glusterd.service 
systemctl enable glusterd.service
systemctl status glusterd.service
故障原因是版本过高导致
yum remove glusterfs-api.x86_64 glusterfs-cli.x86_64 glusterfs.x86_64 glusterfs-libs.x86_64 glusterfs-client-xlators.x86_64 glusterfs-fuse.x86_64 -y

此处可用脚本执行:

#!/bin/bash
function backuprepo {
cd /etc/yum.repos.d
mkdir repo.bak
mv *.repo repo.bak
#mount /dev/sr0 /mnt > /dev/null
}
makeglfsrepo(){
echo '[glfs]
name = glfs
baseurl=file:///opt/gfsrepo
enabled=1
gpgcheck=0' > glfs.repo
}
useglfsrepo (){
yum clean all > /dev/null
yum makecache > /dev/null
}
install () {
#yum -y install glusterfs glusterfs-server glusterfs-fuse glusterfs-rdma
#systemctl start glusterd.service 
#systemctl enable glusterd.service
#systemctl status glusterd.service
#}
#============main==============
backuprepo
makeglfsrepo
useglfsrepo
#install

image.png

image.png

3.5 添加节点到存储信任池中(在 node1 节点上操作)

#只要在一台Node节点上添加其它节点即可
gluster peer probe node1
gluster peer probe node2
gluster peer probe node3
gluster peer probe node4
#在每个Node节点上查看群集状态
gluster peer status

image.png

image.png

image.png

image.png

3.6 创建卷

根据规划创建如下卷:

image.png

3.6.1 创建分布式卷

#创建分布式卷,没有指定类型,默认创建的是分布式卷
gluster volume create dis-volume node1:/data/sdb1 node2:/data/sdb1 force
#查看卷列表
gluster volume list
#启动新建分布式卷
gluster volume start dis-volume
#查看创建分布式卷信息
gluster volume info dis-volume

image.png

3.6.2 创建条带卷

#指定类型为 stripe,数值为 2,且后面跟了 2 个 Brick Server,所以创建的是条带卷
gluster volume create stripe-volume stripe 2 node1:/data/sdc1 node2:/data/sdc1 force
gluster volume start stripe-volume
gluster volume info stripe-volume

image.png

3.6.3 创建复制卷

#指定类型为 replica,数值为 2,且后面跟了 2 个 Brick Server,所以创建的是复制卷
gluster volume create rep-volume replica 2 node3:/data/sdb1 node4:/data/sdb1 force
gluster volume start rep-volume
gluster volume info rep-volume

image.png

3.6.4 创建分布式条带卷

#指定类型为 stripe,数值为 2,而且后面跟了 4 个 Brick Server,是 2 的两倍,所以创建的是分布式条带卷
gluster volume create dis-stripe stripe 2 node1:/data/sdd1 node2:/data/sdd1 node3:/data/sdd1 node4:/data/sdd1 force
gluster volume start dis-stripe
gluster volume info dis-stripe

image.png

3.6.5 创建分布式复制卷

指定类型为 replica,数值为 2,而且后面跟了 4 个 Brick Server,是 2 的两倍,所以创建的是分布式复制卷
gluster volume create dis-replica replica 2 node1:/data/sde1 node2:/data/sde1 node3:/data/sde1 node4:/data/sde1 force
gluster volume start dis-rep
gluster volume info dis-rep

image.png

3.6.6 查看当前所有卷的列表

gluster volume list
dis-replica   分布式复制卷
dis-stripe    分布式条带卷
dis-volume    分布式卷
rep-volume    复制卷
stripe-volume 条带卷
分布式卷、条带卷、复制卷、分布式条带卷、分布式复制卷

image.png

3.7 部署 Gluster 客户端

3.7.1 安装客户端软件

#将gfsrepo 软件上传到/opt目下 
cd /etc/yum.repos.d/
mkdir repo.bak
mv *.repo repo.bak
vim glfs.repo
[glfs]
name=glfs
baseurl=file:///opt/gfsrepo
gpgcheck=0
enabled=1
yum clean all && yum makecache
yum -y install glusterfs glusterfs-fuse

image.png

3.7.2 创建挂载目录

mkdir -p /test/{dis,stripe,rep,dis_stripe,dis_replica}
ls /test

image.png

3.7.3 配置 /etc/hosts 文件

echo "192.168.147.100 node1" >> /etc/hosts
echo "192.168.147.101 node2" >> /etc/hosts
echo "192.168.147.102 node3" >> /etc/hosts
echo "192.168.147.103 node4" >> /etc/hosts  

image.png

3.7.4 挂载 Gluster 文件系统

#临时挂载
mount.glusterfs node1:dis-volume /test/dis
mount.glusterfs node1:stripe-volume /test/stripe
mount.glusterfs node1:rep-volume /test/rep
mount.glusterfs node1:dis-stripe /test/dis_stripe
mount.glusterfs node1:dis-replica /test/dis_replica
df -Th
#永久挂载
vim /etc/fstab
node1:dis-volume    /test/dis       glusterfs   defaults,_netdev    0 0
node1:stripe-volume   /test/stripe      glusterfs   defaults,_netdev    0 0
node1:rep-volume    /test/rep       glusterfs   defaults,_netdev    0 0
node1:dis-stripe    /test/dis_stripe    glusterfs   defaults,_netdev    0 0
node1:dis-replica   /test/dis_replica   glusterfs   defaults,_netdev    0 0

image.png

image.png

3.8 测试 Gluster 文件系统

3.8.1 卷中写入文件,客户端操作

dd if=/dev/zero of=/opt/demo1.log bs=1M count=40
dd if=/dev/zero of=/opt/demo2.log bs=1M count=40
dd if=/dev/zero of=/opt/demo3.log bs=1M count=40
dd if=/dev/zero of=/opt/demo4.log bs=1M count=40
dd if=/dev/zero of=/opt/demo5.log bs=1M count=40
ls -lh /opt
cp /opt/demo* /test/dis
cp /opt/demo* /test/stripe/
cp /opt/demo* /test/rep/
cp /opt/demo* /test/dis_stripe/
cp /opt/demo* /test/dis_replica/

image.png

image.png

3.8.2 查看文件分布

① 查看分布式文件分布
[root@node1 ~]# ls -lh /data/sdb1         #数据没有被分片
总用量 160M
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo1.log
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo2.log
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo3.log
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo4.log
[root@node2 ~]# ll -h /data/sdb1
总用量 40M
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo5.log

image.png

image.png

② 查看条带卷文件分布
[root@node1 ~]# ls -lh /data/sdc1         #数据被分片50% 没副本 没冗余
总用量 100M
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo1.log
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo2.log
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo3.log
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo4.log
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo5.log
[root@node2 ~]# ll -h /data/sdc1          #数据被分片50% 没副本 没冗余
总用量 100M
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo1.log
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo2.log
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo3.log
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo4.log
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo5.log

image.png

image.png

③ 查看复制卷分布
[root@node3 ~]# ll -h /data/sdb1          #数据没有被分片 有副本 有冗余     
总用量 200M
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo1.log
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo2.log
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo3.log
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo4.log
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo5.log
[root@node4 ~]# ll -h /data/sdb1          #数据没有被分片 有副本 有冗余
总用量 200M
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo1.log
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo2.log
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo3.log
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo4.log
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo5.log

image.png

④ 查看分布式条带卷分布
[root@node1 ~]# ll -h /data/sdd1          #数据被分片50% 没副本 没冗余
总用量 80M
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo1.log
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo2.log
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo3.log
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo4.log
[root@node2 ~]# ll -h /data/sdd1
总用量 80M
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo1.log
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo2.log
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo3.log
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo4.log
[root@node3 ~]# ll -h /data/sdd1
总用量 20M
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo5.log
[root@node4 ~]# ll -h /data/sdd1
总用量 20M
-rw-r--r--. 2 root root 20M 8月   2 00:21 demo5.log

image.png

⑤ 查看分布式复制卷分布
[root@node1 ~]# ll -h /data/sde1      #数据没有被分片 有副本 有冗余
总用量 160M
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo1.log
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo2.log
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo3.log
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo4.log
[root@node2 ~]# ll -h /data/sde1
总用量 160M
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo1.log
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo2.log
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo3.log
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo4.log
[root@node3 ~]# ll -h /data/sde1
总用量 40M
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo5.log
[root@node4 ~]# ll -h /data/sde1
总用量 40M
-rw-r--r--. 2 root root 40M 8月   2 00:21 demo5.log

image.png

3.8.3 破坏性测试

挂起 node2 节点或者关闭glusterd服务来模拟故障
[root@node2 ~]# systemctl stop glusterd.service

在客户端上查看文件是否正常

① 分布式卷数据查看
[root@client opt]# ll /test/dis/    #在客户机上发现少了demo5.log文件,这个是在node2上的
总用量 163840
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo1.log
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo2.log
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo3.log
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo4.log

image.png

② 条带卷
[root@client opt]# ll /test/stripe/   #无法访问,条带卷不具备冗余性
总用量 0

image.png

③ 分布式条带卷
[root@client opt]# ll /test/dis_stripe/   #无法访问,分布条带卷不具备冗余性
总用量 40960
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo5.log

image.png

④ 分布式复制卷
[root@client opt]# ll /test/dis_replica/  #可以访问,分布式复制卷具备冗余性
总用量 204800
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo1.log
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo2.log
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo3.log
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo4.log
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo5.log

image.png

挂起 node2 和 node4 节点,在客户端上查看文件是否正常
① 测试复制卷是否正常
[root@client opt]# ll /test/rep/    #在客户机上测试正常 数据有
总用量 204800
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo1.log
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo2.log
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo3.log
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo4.log
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo5.log

image.png

② 测试分布式条卷是否正常
[root@client opt]# ll /test/dis_stripe/   #在客户机上测试没有数据 
总用量 0

image.png

③ 测试分布式复制卷是否正常
[root@client opt]# ll /test/dis_replica/    #在客户机上测试正常 有数据
总用量 204800
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo1.log
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo2.log
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo3.log
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo4.log
-rw-r--r--. 1 root root 41943040 8月   2 00:21 demo5.log

image.png

四、GFS运维常用命令

4.1 查看GlusterFS卷

gluster volume list 

4.2 查看所有卷的信息

gluster volume info

4.3 查看所有卷的状态

gluster volume status

4.4 停止一个卷

gluster volume stop dis-stripe

4.5 删除一个卷,注意:删除卷时,需要先停止卷,且信任池中不能有主机处于宕机状态,否则删除不成功

gluster volume delete dis-stripe

4.6 设置卷的访问控制

#仅拒绝
gluster volume set dis-rep auth.deny 192.168.147.100
#仅允许
gluster volume set dis-replica auth.allow 192.168.147.*   #设置192.168.147.0网段的所有IP地址都能访问dis-replica卷(分布式复制卷)


目录
相关文章
|
10月前
|
存储 监控 Linux
分布式文件系统Moosefs
MooseFS是一个具备冗余容错功能的分布式网络文件系统,它将数据分别存放在多个物理服务器或单独磁盘或分区上,确保一份数据有多个备份副本。对于访问的客户端或者用户来说,整个分布式网络文件系统集群看起来就像一个资源一样。
|
9月前
|
网络协议 Linux 网络安全
搭建GFS分布式文件系统
搭建GFS分布式文件系统
|
存储 分布式计算 负载均衡
GFS 分布式文件系统(上)
GlusterFS简介 a) GlusterFS是一-个开源的分布式文件系统。 由存储服务器、客户端以及NFS/Samba存储网关(可选,根据需要选择使用)组成。 无元数据服务器组件,这有助于提升整个系统的性能、可靠性和稳定性。
GFS 分布式文件系统(上)
|
存储 分布式计算 安全
HDFS分布式文件系统架构原理详解
HDFS(Hadoop Distributed File System)是Hadoop核心组成之一,是分布式计算中数据存储管理的基础,被设计成适合运行在通用硬件上的分布式文件系统。HDFS架构中有两类节点,一类是NameNode,又叫“元数据节点”,另一类是DataNode,又叫“数据节点”,分别执行Master和Worker的具体任务。HDFS是一个(Master/Slave)体系结构,“一次写入,多次读取”。HDFS的设计思想:分而治之—将大文件、大批量文件分布式存放在大量独立的机器上。
HDFS分布式文件系统架构原理详解
|
存储 缓存 负载均衡
|
存储 分布式计算 关系型数据库
GFS分布式文件系统(二)
GFS分布式文件系统(二)
|
存储 Java 文件存储
什么是分布式文件系统| 学习笔记
快速学习什么是分布式文件系统。
768 0
什么是分布式文件系统| 学习笔记
|
存储
GFS 分布式文件系统(下)
GlusterFS利用双重特性来提供高容量存储解决方案。
GFS 分布式文件系统(下)
|
Linux 测试技术 存储