Python实战项目——餐厅订单数据分析(一)

简介: Python实战项目——餐厅订单数据分析(一)

项目背景

餐厅经营的好坏需要用数据来说明,如果一个餐厅生意惨淡,那么应该先收集最近的数据,然后进行数据分析,再对应相应出现的问题进行解决和做出对应的商业调整。今天开始我们分析一来家餐厅的数据。

认识数据并预处理

拿到一个数据,第一步就是要进行数据预处理。我们经常遇见的数据存在噪声、冗余、关联性、不完整性等。

数据预处理的常见方法

(1)数据清理:将数据中缺失的值补充完整、消除噪声数据、识别或删除离群点并解决不一致性。

(2)数据集成:将多个数据源中的数据进行整合并统一存储

(3)数据变换:通过平滑聚集、数据概化、规范化等方式将数据转换成适用于数据挖掘的形式

(4)数据归约:数据挖掘经常数据量很大,通过对数据集进行规约或简化,可以保持元数据的完整性,且数据归约后的结果与规约前的结果几乎相同。


这里我们简单介绍,不做深入解释。这不是我们今天的主要内容。

数据介绍

我们的数据是一个餐厅订单,其中包括detail_id,order_id,dishes_id等一系列餐厅数据。拥有3个sheet,数据项大约1w左右。还有各种各样的美食和酒水,看的我流口水(蒜蓉生蚝,蒙古烤羊腿,桂圆枸杞鸽子汤,38度剑南春 ,美妙绝伦之白莲花,姜葱炒花蟹)

导入数据

现在我们开始导入数据到notebook

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'SimHei' ## 设置中文显示
%matplotlib inline
# 加载数据
data1 = pd.read_excel('D:\\meal_order_detail.xlsx',sheet_name='meal_order_detail1')
data2 = pd.read_excel('D:\\meal_order_detail.xlsx',sheet_name='meal_order_detail2')
data3 = pd.read_excel('D:\\meal_order_detail.xlsx',sheet_name='meal_order_detail3')

数据预处理

# 数据预处理(合并数据,NA等处理),分析数据
data = pd.concat([data1,data2,data3],axis=0)  #按照行进行拼接数据
# data.head(5)
data.dropna(axis=1,inplace=True) #按照列删除na列,并且修改源数据
data.info()

简单统计

接下来我们进行数据的简单统计

统计卖出菜品的平均价格

round(data['amounts'].mean(),2)  #方法一:pandas自带函数
round(np.mean(data['amounts']),2)  #方法二:numpy函数处理

两种方法都可以,但我自己习惯第一种。

频数统计,什么菜最受欢迎 (对菜名进行频数统计,取最大前10名)

dishes_count = data['dishes_name'].value_counts()[:10]
• 1

结果如图所示,果然大家都爱吃白饭。。

数据可视化matplotlib

既然大家都爱吃白饭,那我们就直接可视化上面那个结果好了。

dishes_count.plot(kind='line',color=['r'])
dishes_count.plot(kind='bar',fontsize=16)
for x,y in enumerate(dishes_count):
    print(x,y)
    plt.text(x,y+2,y,ha='center',fontsize=12)

8月份餐厅订单点菜种类前10名,平均点菜25个菜品

data_group = data['order_id'].value_counts()[:]
data_group.plot(kind='bar',fontsize=16,color=['r','m','b','y','g'])
plt.title('订单点菜的种类Top10')
plt.xlabel('订单ID',fontsize=16)
plt.ylabel('点菜种类',fontsize=16)

8月份订单点菜数量前10名

这一步首先我们的进行简单操作,我们求订单ID点菜数量Top10,因此分组order_id,counts求和,排序,前十。

统计单道菜消费总额

data['total_amounts'] =data['counts']*data['amounts'] 

分组求和

sort_counts =Group_sum.sort_values(by='counts',ascending=False)
sort_counts['counts'][:10].plot(kind='bar',fontsize=16)
plt.xlabel('订单ID')
plt.ylabel('点菜数量')
plt.title('订单ID点菜数量Top10')

哪个订单ID吃的钱最多(排序)

也就是求消费金额。

sort_total_amounts =Group_sum.sort_values(by='total_amounts',ascending=False)
sort_total_amounts['total_amounts'][:10].plot(kind='bar')
plt.xlabel('订单ID')
plt.ylabel('消费金额')
plt.title('消费金额前10')

哪个订单ID平均消费最贵

Group_sum['average'] = Group_sum['total_amounts']/Group_sum['counts']
sort_average = Group_sum.sort_values(by='average',ascending=False)
sort_average['average'][:].plot(kind='bar')
plt.xlabel('订单ID')
plt.ylabel('消费单价')
plt.title('订单消费单价前10')

一天当中什么时间段,点菜量比较集中(hour)

data['hourcount'] = 1 # 新列,用作计数器
data['time'] = pd.to_datetime(data['place_order_time']) #将时间转换成日期类型存储
data['hour'] = data['time'].map(lambda x:x.hour)
gp_by_hour = data.groupby(by='hour').count()['hourcount']
gp_by_hour.plot(kind='bar')
plt.xlabel('小时')
plt.ylabel('点菜数量')
plt.title('点菜数与小时的关系图')

哪一天订餐数量最多

data['daycount'] = 1  
data['day'] = data['time'].map(lambda x:x.day)  #解析出天
gp_by_day  = data.groupby(by='day').count()['daycount']
gp_by_day.plot(kind='bar')
plt.xlabel('8月份日期')
plt.ylabel('点菜数量')
plt.title('点菜数量与日期的关系图')
#拓展:排序,取点菜量最大的前5天

查看星期几人数最多,订餐数最多,映射数据到星期
data['weekcount'] = 1
data['weekday'] = data['time'].map(lambda x:x.weekday())
gp_by_weekday = data.groupby(by='weekday').count()['weekcount']
gp_by_weekday.plot(kind='bar')
plt.xlabel('星期')
plt.ylabel('点菜数量')
plt.title('点菜数量与星期关系图')

总结

以上就是对数据的简单认识和处理,通过作图让我们能够更加清晰的认识数据,加深了解数据之间的联系和区别

不同维度进行数据分析:

针对订单order_id:

什么菜最受欢迎

点菜的种类

点菜的数量

消费金额最大

平均消费

针对时间日期进行分析:

点菜量比较集中的时间

哪一天订餐量最大

星期几就餐人数最多

技术点:

拼接数据:pd.concat([列1,…])

分组进行统计(分组求和)

排序,切片Top10

绘制柱状图走势和高度


相关文章
|
15天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
43 0
|
9天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
21 2
|
14天前
|
弹性计算 Linux iOS开发
Python 虚拟环境全解:轻松管理项目依赖
本文详细介绍了 Python 虚拟环境的概念、创建和使用方法,包括 `virtualenv` 和 `venv` 的使用,以及最佳实践和注意事项。通过虚拟环境,你可以轻松管理不同项目的依赖关系,避免版本冲突,提升开发效率。
|
16天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
30 2
|
7天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
7天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
9天前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
9天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
2月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
49 1
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!
在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。
48 2