并发编程——JUC并发工具

简介: JUC 是Java并发编程工具类库,提供了一些常用的并发工具,例如锁、信号量、计数器、事件循环、线程池、并发集合等。这些工具可以帮助开发人员简化并发编程的复杂性,提高程序效率和可靠性。

@[TOC]
在这里插入图片描述

前言

JUC 是Java并发编程工具类库,提供了一些常用的并发工具,例如锁、信号量、计数器、事件循环、线程池、并发集合等。这些工具可以帮助开发人员简化并发编程的复杂性,提高程序效率和可靠性。

CountDownLatch

CountDownLatch应用

CountDownLatch本身就好像一个计数器,可以等待一个或多个线程完成后再执行,其基于AQS实现。

public static void main(String[] args) throws InterruptedException, BrokenBarrierException {
   
   
    CountDownLatch countDownLatch = new CountDownLatch(3);

    new Thread(() -> {
   
   
        System.out.println("111");
        countDownLatch.countDown();
    }).start();

    new Thread(() -> {
   
   
        System.out.println("222");
        countDownLatch.countDown();
    }).start();

    new Thread(() -> {
   
   
        try {
   
   
            Thread.sleep(1000);
        } catch (InterruptedException e) {
   
   
            e.printStackTrace();
        }
        System.out.println("333");
        countDownLatch.countDown();
    }).start();

    // 主线会阻塞在这个位置,直到CountDownLatch的state变为0
    countDownLatch.await();
    System.out.println("main");
}

CountDownLatch核心源码

// CountDownLatch 的有参构造
public CountDownLatch(int count) {
   
   
    // 健壮性校验
    if (count < 0) throw new IllegalArgumentException("count < 0");
    // 构建Sync给AQS的state赋值
    this.sync = new Sync(count);
}

countDown方法,本质就是调用了AQS的释放共享锁操作

public final boolean releaseShared(int arg) {
   
   
    if (tryReleaseShared(arg)) {
   
   
        // 唤醒在AQS队列中排队的线程。
        doReleaseShared();
        return true;
    }
    return false;
}

// countDownLatch实现的业务
protected boolean tryReleaseShared(int releases) {
   
   
    for (;;) {
   
   
        int c = getState();
        if (c == 0)
            return false;
        // state - 1
        int nextc = c-1;
        // 用CAS赋值
        if (compareAndSetState(c, nextc))
            return nextc == 0;
    }
}
// 如果CountDownLatch中的state已经为0了,那么再次执行countDown跟没执行一样。
// 而且只要state变为0,await就不会阻塞线程。

功能都是AQS提供的,只有tryReleaseShared需要实现的类自己去编写业务。

await方法,调用了AQS提供的获取共享锁并且允许中断的方法

// await方法
public void await() throws InterruptedException {
   
   
    sync.acquireSharedInterruptibly(1);
}

// AQS获取共享锁并且允许中断的方法
public final void acquireSharedInterruptibly(int arg)
        throws InterruptedException {
   
   
    if (Thread.interrupted())
        throw new InterruptedException();
    // countDownLatch操作
    if (tryAcquireShared(arg) < 0)
        // 如果返回的是-1,代表state肯定大于0
        doAcquireSharedInterruptibly(arg);
}

// CountDownLatch实现的tryAcquireShared
protected int tryAcquireShared(int acquires) {
   
   
    // state为0,返回1,。否则返回-1
    return (getState() == 0) ? 1 : -1;
}

// 让当前线程进到AQS队列,排队去
private void doAcquireSharedInterruptibly(int arg) throws InterruptedException {
   
   
    // 将当前线程封装为Node,并且添加到AQS的队列中
    final Node node = addWaiter(Node.SHARED);
    boolean failed = true;
    try {
   
   
        for (;;) {
   
   
            final Node p = node.predecessor();
            if (p == head) {
   
   
                // 再次走上面的tryAcquireShared,如果返回的是的1,代表state为0
                int r = tryAcquireShared(arg);
                if (r >= 0) {
   
   
                    // 会将当前线程和后面所有排队的线程都唤醒。
                    setHeadAndPropagate(node, r);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                throw new InterruptedException();
        }
    } finally {
   
   
        if (failed)
            cancelAcquire(node);
    }
}

Semaphore

Semaphore应用

Semaphore一般用于流控。比如有一个公共资源,多线程都可以访问时,Semaphore可以当作信号量做限制。每当有一个线程获取连接对象时,对信号量-1,当这个线程归还资源时对信号量+1。如果线程拿资源时,发现Semaphore内部的资源个数为0,就会被阻塞。

public static void main(String[] args) throws InterruptedException, BrokenBarrierException {
   
   
    // 声明信号量
    Semaphore semaphore = new Semaphore(1);
    // 能否去拿资源
    semaphore.acquire();
    // 拿资源处理业务
    System.out.println("main");
    // 归还资源
    semaphore.release();
}

Semaphore核心源码

Semaphore有公平和非公平两种竞争资源的方式。

// 
public Semaphore(int permits, boolean fair) {
   
   
    sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}

// 设置资源个数,State其实就是信号量的资源个数
Sync(int permits) {
   
   
    setState(permits);
}

在调用 acquire 获取资源时也是基于AQS提供的获取共享锁方法。

release就是将state+1,归还资源。

// 两个一起 阿巴阿巴
public void release() {
   
   
    sync.releaseShared(1);
}

public final boolean releaseShared(int arg) {
   
   
    if (tryReleaseShared(arg)) {
   
   
        // 唤醒在AQS中排队的Node,去竞争资源
        doReleaseShared();
        return true;
    }
    return false;
}

// 信号量实现的归还资源
protected final boolean tryReleaseShared(int releases) {
   
   
    for (;;) {
   
   
        // 拿state
        int current = getState();
        // state + 1
        int next = current + releases;
        // 资源最大值,再+1,变为负数
        if (next < current)
            throw new Error("Maximum permit count exceeded");
        // CAS 改一手
        if (compareAndSetState(current, next))
            return true;
    }
}

共享锁在释放资源后,如果头节点为0,无法确认真的没有后继节点。如果头节点为0,需要将头节点的状态修改为-3,当最新拿到锁资源的线程,查看是否有后继节点并且为共享锁,就唤醒排队的线程

CyclicBarrier

CyclicBarrier应用

CyclicBarrier 一般称为栅栏,和CountDownLatch很像。CountDownLatch在操作时,只能使用一次,也就是state变为0之后,就无法再使用了。CyclicBarrier是可以复用的,他的计数器可以归位,然后再处理。而且可以在计数过程中出现问题后,重置当前CyclicBarrier,再次重新操作!

public static void main(String[] args) throws InterruptedException, BrokenBarrierException {
   
   
    // 声明栅栏
    CyclicBarrier barrier = new CyclicBarrier(3,() -> {
   
   
        System.out.println("开始!");
    });

    new Thread(() -> {
   
   
        System.out.println("第一位选手到位");
        try {
   
   
            barrier.await();
            System.out.println("第一位往死里跑!");
        } catch (Exception e) {
   
   
            e.printStackTrace();
        }
    }).start();

    new Thread(() -> {
   
   
        System.out.println("第二位选手到位");
        try {
   
   
            barrier.await();
            System.out.println("第二位也往死里跑!");
        } catch (Exception e) {
   
   
            e.printStackTrace();
        }
    }).start();

    System.out.println("裁判已经到位");
    barrier.await();
}

CyclicBarrier核心源码

CyclicBarrier没有直接使用AQS,而是使用ReentrantLock,间接的使用AQS

// CyclicBarrier的有参
public CyclicBarrier(int parties, Runnable barrierAction) {
   
   // 健壮性判断!
    if (parties <= 0) throw new IllegalArgumentException();
    // parties是final修饰的,需要在重置时,使用!
    this.parties = parties;
    // count是在执行await用来计数的。
    this.count = parties;
    // 当计数count为0时 ,先执行这个Runnnable!在唤醒被阻塞的线程
    this.barrierCommand = barrierAction;
}

线程执行await方法,会对count-1,再判断count是否为0,如果不为0,需要添加到AQS中的ConditionObject的Waiter队列中排队,并park当前线程。如果为0,证明线程到齐,需要执行nextGeneration,会先将Waiter队列中的Node全部转移到AQS的队列中,没有后继节点设置为0。然后重置count和broker标记。等到unlock执行后,每个线程都会被唤醒。

private int dowait(boolean timed, long nanos) throws InterruptedException, BrokenBarrierException, TimeoutException {
   
   
    // 相当于synchronized中使用wait和notify
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {
   
   
        // 里面就是boolean,默认false
        final Generation g = generation;

        // 判断之前栅栏加入线程时,是否有超时、中断等问题,如果有,设置boolean为true,其他线程再进来,直接凉凉
        if (g.broken)
            throw new BrokenBarrierException();

        if (Thread.interrupted()) {
   
   
            breakBarrier();
            throw new InterruptedException();
        }


        // 对计数器count--
        int index = --count;
        // 如果--完,是0,代表突破栅栏,干活!
        if (index == 0) {
   
     
            // 默认false
            boolean ranAction = false;
            try {
   
   
                // 如果你用的是2个参数的有参构造,说明你传入了任务,index == 0,先执行CyclicBarrier有参的任务
                final Runnable command = barrierCommand;
                if (command != null)
                    command.run();
                // 设置为true
                ranAction = true;
                nextGeneration();
                return 0;
            } finally {
   
   
                if (!ranAction)
                    breakBarrier();
            }
        }

        // --完之后,index不是0,代表还需要等待其他线程
        for (;;) {
   
   
            try {
   
   
                // 如果没设置超时时间。  await()
                if (!timed)
                    trip.await();
                // 设置了超时时间。  await(1,SECOND)
                else if (nanos > 0L)
                    nanos = trip.awaitNanos(nanos);
            } catch (InterruptedException ie) {
   
   
                if (g == generation && ! g.broken) {
   
   
                    breakBarrier();
                    throw ie;
                } else {
   
   
                    Thread.currentThread().interrupt();
                }
            }

            if (g.broken)
                throw new BrokenBarrierException();

            if (g != generation)
                return index;

            if (timed && nanos <= 0L) {
   
   
                breakBarrier();
                throw new TimeoutException();
            }
        }
    } finally {
   
   
        lock.unlock();
    }
}



// 挂起线程
public final void await() throws InterruptedException {
   
   
    // 允许中断
    if (Thread.interrupted())
        throw new InterruptedException();
    // 添加到队列(不是AQS队列,是AQS里的ConditionObject中的队列)
    Node node = addConditionWaiter();
    int savedState = fullyRelease(node);
    int interruptMode = 0;
    while (!isOnSyncQueue(node)) {
   
   
        // 挂起当前线程
        LockSupport.park(this);
        if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
            break;
    }
}


// count到0,唤醒所有队列里的线程线程
private void nextGeneration() {
   
   
    // 这个方法就是将Waiter队列中的节点遍历都扔到AQS的队列中,真正唤醒的时机,是unlock方法
    trip.signalAll();
    // 重置计数器
    count = parties;
    // 重置异常判断
    generation = new Generation();
}

总结

使用这些工具类时需要注意:

  • Semaphore的使用要避免死锁和过度同步导致的性能问题。
  • CyclicBarrier在屏障点之后的代码要保证所有线程都能正确执行,否则可能导致部分线程一直等待。
  • CountDownLatch的countDown方法要保证在所有线程执行完毕之前被调用,否则可能导致部分线程一直等待。

根据具体的应用场景选择合适的工具类,正确使用并合理设计并发策略,可以提高程序的效率和可靠性。

相关文章
|
8月前
|
缓存 Java
深入理解Java并发编程:线程池的应用与优化
【5月更文挑战第30天】本文将深入探讨Java并发编程中的一个重要主题——线程池。我们将详细解析线程池的概念、应用及其优化方法,帮助读者更好地理解和使用线程池,提高程序的性能和效率。
|
Java
Java并发编程和多线程的区别
Java并发编程和多线程的区别
85 0
|
7月前
|
安全 Java 开发者
Java并发编程:理解并发与多线程
在当今软件开发领域,Java作为一种广泛应用的编程语言,其并发编程能力显得尤为重要。本文将深入探讨Java中的并发编程概念,包括多线程基础、线程安全、并发工具类等内容,帮助开发者更好地理解和应用Java中的并发特性。
35 1
|
8月前
|
Java
深入理解Java并发编程:线程池的使用与优化
【2月更文挑战第15天】本文将深入探讨Java并发编程中的一个重要主题——线程池。我们将首先介绍线程池的基本概念和作用,然后详细解析线程池的核心参数以及如何合理配置这些参数以优化性能。接下来,我们将通过实例演示线程池的使用方法,并探讨在高并发场景下如何进行线程池的调优。最后,我们将总结线程池的优势以及在使用过程中需要注意的问题。
|
8月前
|
安全 Java
多线程(进阶三:JUC)
多线程(进阶三:JUC)
74 0
|
设计模式 Java 数据处理
【Java并发编程系列8】多线程实战
Java多线程的学习,也有大半个月了,从开始学习Java多线程时,就给自己定了一个小目标,希望能写一个多线程的Demo,今天主要是兑现这个小目标。
842 0
|
设计模式 存储 安全
多线程(六):多线程案例
多线程(六):多线程案例
128 0
多线程(六):多线程案例
|
Web App开发 存储 安全
Java并发编程之多线程
我们首先,先要了解什么是进程,什么是线程。
122 0
|
Java Maven C++
多线程进阶 JUC并发编程
多线程进阶 JUC并发编程
159 0
多线程进阶 JUC并发编程
|
Java 调度 数据库
JUC并发编程——多线程入门
JUC并发编程——多线程入门
148 0
JUC并发编程——多线程入门